These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16981741)

  • 1. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.
    Andreev VA; Victorov AI
    Langmuir; 2006 Sep; 22(20):8298-310. PubMed ID: 16981741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular thermodynamics for swelling of a mesoscopic ionomer gel in 1 : 1 salt solutions.
    Victorov A; Radke C; Prausnitz J
    Phys Chem Chem Phys; 2006 Jan; 8(2):264-78. PubMed ID: 16482269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.
    Shkel IA
    J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wormlike micelles in mixed surfactant solutions.
    Acharya DP; Kunieda H
    Adv Colloid Interface Sci; 2006 Nov; 123-126():401-13. PubMed ID: 16860768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular thermodynamic modeling of the morphology transitions in a solution of a diblock copolymer containing a weak polyelectrolyte chain.
    Victorov AI; Plotnikov NV; Hong PD
    J Phys Chem B; 2010 Jul; 114(27):8846-60. PubMed ID: 20560607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical modeling of micelle growth. 4. Molecular thermodynamics of wormlike micelles from ionic surfactants: Theory vs. experiment.
    Danov KD; Kralchevsky PA; Stanimirova RD; Stoyanov SD; Cook JL; Stott IP
    J Colloid Interface Sci; 2021 Feb; 584():561-581. PubMed ID: 33129165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Micellar Growth and Branching in Mixtures of Zwitterionic with Ionic Surfactants.
    Victorov AI; Molchanov VS; Sorina PO; Safonova EA; Philippova OE
    Langmuir; 2022 Oct; 38(39):11929-11940. PubMed ID: 36121425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic screening and charge correlation effects in micellization of ionic surfactants.
    Jusufi A; Hynninen AP; Haataja M; Panagiotopoulos AZ
    J Phys Chem B; 2009 May; 113(18):6314-20. PubMed ID: 19361177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.
    Burov SV; Shchekin AK
    J Chem Phys; 2010 Dec; 133(24):244109. PubMed ID: 21197978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides.
    El Seoud OA; Pires PA; Abdel-Moghny T; Bastos EL
    J Colloid Interface Sci; 2007 Sep; 313(1):296-304. PubMed ID: 17509607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems.
    Shrestha RG; Shrestha LK; Aramaki K
    J Colloid Interface Sci; 2008 Jun; 322(2):596-604. PubMed ID: 18395738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution.
    Dong B; Zhang J; Zheng L; Wang S; Li X; Inoue T
    J Colloid Interface Sci; 2008 Mar; 319(1):338-43. PubMed ID: 18076899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.