These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 16981783)
1. Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization. Voccia S; Ignatova M; Jérôme R; Jérôme C Langmuir; 2006 Sep; 22(20):8607-13. PubMed ID: 16981783 [TBL] [Abstract][Full Text] [Related]
2. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Ignatova M; Voccia S; Gilbert B; Markova N; Cossement D; Gouttebaron R; Jérôme R; Jérôme C Langmuir; 2006 Jan; 22(1):255-62. PubMed ID: 16378429 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of copolymer brushes endowed with adhesion to stainless steel surfaces and antibacterial properties by controlled nitroxide-mediated radical polymerization. Ignatova M; Voccia S; Gilbert B; Markova N; Mercuri PS; Galleni M; Sciannamea V; Lenoir S; Cossement D; Gouttebaron R; Jérôme R; Jérôme C Langmuir; 2004 Nov; 20(24):10718-26. PubMed ID: 15544407 [TBL] [Abstract][Full Text] [Related]
4. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties. Ignatova M; Voccia S; Gabriel S; Gilbert B; Cossement D; Jerome R; Jerome C Langmuir; 2009 Jan; 25(2):891-902. PubMed ID: 19177648 [TBL] [Abstract][Full Text] [Related]
5. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993 [TBL] [Abstract][Full Text] [Related]
6. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848 [TBL] [Abstract][Full Text] [Related]
7. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. Kumar V; Jolivalt C; Pulpytel J; Jafari R; Arefi-Khonsari F J Biomed Mater Res A; 2013 Apr; 101(4):1121-32. PubMed ID: 23015534 [TBL] [Abstract][Full Text] [Related]
8. Silver ions/ovalbumin films layer-by-layer self-assembled polyacrylonitrile nanofibrous mats and their antibacterial activity. Song R; Yan J; Xu S; Wang Y; Ye T; Chang J; Deng H; Li B Colloids Surf B Biointerfaces; 2013 Aug; 108():322-8. PubMed ID: 23563300 [TBL] [Abstract][Full Text] [Related]
9. Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. Abdullayev E; Sakakibara K; Okamoto K; Wei W; Ariga K; Lvov Y ACS Appl Mater Interfaces; 2011 Oct; 3(10):4040-6. PubMed ID: 21905653 [TBL] [Abstract][Full Text] [Related]
10. In vitro antibacterial and cytotoxicity assay of multilayered polyelectrolyte-functionalized stainless steel. Shi Z; Neoh KG; Zhong SP; Yung LY; Kang ET; Wang W J Biomed Mater Res A; 2006 Mar; 76(4):826-34. PubMed ID: 16345094 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Marini M; De Niederhausern S; Iseppi R; Bondi M; Sabia C; Toselli M; Pilati F Biomacromolecules; 2007 Apr; 8(4):1246-54. PubMed ID: 17335284 [TBL] [Abstract][Full Text] [Related]
12. Development of silver-containing austenite antibacterial stainless steels for biomedical applications part I: microstructure characteristics, mechanical properties and antibacterial mechanisms. Huang CF; Chiang HJ; Lan WC; Chou HH; Ou KL; Yu CH Biofouling; 2011 May; 27(5):449-57. PubMed ID: 21598123 [TBL] [Abstract][Full Text] [Related]
13. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Andresen M; Stenstad P; Møretrø T; Langsrud S; Syverud K; Johansson LS; Stenius P Biomacromolecules; 2007 Jul; 8(7):2149-55. PubMed ID: 17542633 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. Perelshtein I; Applerot G; Perkas N; Wehrschetz-Sigl E; Hasmann A; Guebitz GM; Gedanken A ACS Appl Mater Interfaces; 2009 Feb; 1(2):361-6. PubMed ID: 20353224 [TBL] [Abstract][Full Text] [Related]
15. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Jampala SN; Sarmadi M; Somers EB; Wong AC; Denes FS Langmuir; 2008 Aug; 24(16):8583-91. PubMed ID: 18646726 [TBL] [Abstract][Full Text] [Related]
16. First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. Murthy PS; Murali Mohan Y; Varaprasad K; Sreedhar B; Mohana Raju K J Colloid Interface Sci; 2008 Feb; 318(2):217-24. PubMed ID: 18005980 [TBL] [Abstract][Full Text] [Related]
17. Embedded silver ions-containing liposomes in polyelectrolyte multilayers: cargos films for antibacterial agents. Malcher M; Volodkin D; Heurtault B; André P; Schaaf P; Möhwald H; Voegel JC; Sokolowski A; Ball V; Boulmedais F; Frisch B Langmuir; 2008 Sep; 24(18):10209-15. PubMed ID: 18698855 [TBL] [Abstract][Full Text] [Related]
18. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. Eby DM; Luckarift HR; Johnson GR ACS Appl Mater Interfaces; 2009 Jul; 1(7):1553-60. PubMed ID: 20355960 [TBL] [Abstract][Full Text] [Related]