These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16982080)

  • 1. Application of the self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands.
    Lee BH; Scholz M
    Water Res; 2006 Oct; 40(18):3367-74. PubMed ID: 16982080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map.
    Zhang L; Scholz M; Mustafa A; Harrington R
    Water Res; 2008 Jul; 42(13):3519-27. PubMed ID: 18538817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the self-organizing map as a prediction tool for an integrated constructed wetland agroecosystem treating agricultural runoff.
    Zhang L; Scholz M; Mustafa A; Harrington R
    Bioresour Technol; 2009 Jan; 100(2):559-65. PubMed ID: 18678483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper.
    Scholz M
    Water Res; 2003 Mar; 37(6):1270-7. PubMed ID: 12598191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica).
    Meena AK; Kadirvelu K; Mishra GK; Rajagopal C; Nagar PN
    J Hazard Mater; 2008 Feb; 150(3):604-11. PubMed ID: 17600619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective rates of heavy metal release from alkaline wastes--quantified by column outflow experiments and inverse simulations.
    Wehrer M; Totsche KU
    J Contam Hydrol; 2008 Oct; 101(1-4):53-66. PubMed ID: 18757112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a pilot-scale constructed wetland system for treating simulated ash basin water.
    Dorman L; Castle JW; Rodgers JH
    Chemosphere; 2009 May; 75(7):939-47. PubMed ID: 19223060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland.
    Maine MA; Suñe N; Hadad H; Sánchez G; Bonetto C
    J Environ Manage; 2009 Jan; 90(1):355-63. PubMed ID: 18079048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal.
    Duran A; Soylak M; Tuncel SA
    J Hazard Mater; 2008 Jun; 155(1-2):114-20. PubMed ID: 18164127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing.
    Tromp K; Lima AT; Barendregt A; Verhoeven JT
    J Hazard Mater; 2012 Feb; 203-204():290-8. PubMed ID: 22226719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of vetiver grass constructed wetland for treatment of leachate.
    Bwire KM; Njau KN; Minja RJ
    Water Sci Technol; 2011; 63(5):924-30. PubMed ID: 21411942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical leaching of metals from wastewater sludge: comparative study by use of three oxidizing agents [H2O2, FeCl3, and Fe2(SO4)3].
    Bouda M; Hammy F; Mercier G; Blais JF
    Water Environ Res; 2009 May; 81(5):523-31. PubMed ID: 19472944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mature experimental constructed wetlands treating urban water receiving high metal loads.
    Scholz M; Höhn P; Minall R
    Biotechnol Prog; 2002; 18(6):1257-64. PubMed ID: 12467460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.