These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

528 related articles for article (PubMed ID: 16982329)

  • 1. Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and proliferation.
    Hartman AD; Wilson-Weekes A; Suvannasankha A; Burgess GS; Phillips CA; Hincher KJ; Cripe LD; Boswell HS
    Exp Hematol; 2006 Oct; 34(10):1360-76. PubMed ID: 16982329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation of antileukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR-ABL- and mutant FLT3-expressing cells.
    Weisberg E; Banerji L; Wright RD; Barrett R; Ray A; Moreno D; Catley L; Jiang J; Hall-Meyers E; Sauveur-Michel M; Stone R; Galinsky I; Fox E; Kung AL; Griffin JD
    Blood; 2008 Apr; 111(7):3723-34. PubMed ID: 18184863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AEE788 is a vascular endothelial growth factor receptor tyrosine kinase inhibitor with antiproliferative and proapoptotic effects in acute myeloid leukemia.
    Barbarroja N; Torres LA; Rodriguez-Ariza A; Valverde-Estepa A; Lopez-Sanchez LM; Ruiz-Limon P; Perez-Sanchez C; Carretero RM; Velasco F; López-Pedrera C
    Exp Hematol; 2010 Aug; 38(8):641-52. PubMed ID: 20380868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes.
    Reindl C; Quentmeier H; Petropoulos K; Greif PA; Benthaus T; Argiropoulos B; Mellert G; Vempati S; Duyster J; Buske C; Bohlander SK; Humphries KR; Hiddemann W; Spiekermann K
    Clin Cancer Res; 2009 Apr; 15(7):2238-47. PubMed ID: 19276253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia.
    Zeng Z; Samudio IJ; Zhang W; Estrov Z; Pelicano H; Harris D; Frolova O; Hail N; Chen W; Kornblau SM; Huang P; Lu Y; Mills GB; Andreeff M; Konopleva M
    Cancer Res; 2006 Apr; 66(7):3737-46. PubMed ID: 16585200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Casitas B-lineage lymphoma mutants activate AKT to induce transformation in cooperation with class III receptor tyrosine kinases.
    Polzer H; Janke H; Schmid D; Hiddemann W; Spiekermann K
    Exp Hematol; 2013 Mar; 41(3):271-80.e4. PubMed ID: 23127761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antitumor compound triazoloacridinone C-1305 inhibits FLT3 kinase activity and potentiates apoptosis in mutant FLT3-ITD leukemia cells.
    Augustin E; Skwarska A; Weryszko A; Pelikant I; Sankowska E; Borowa-Mazgaj B
    Acta Pharmacol Sin; 2015 Mar; 36(3):385-99. PubMed ID: 25640477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mutations of growth factor receptor Flt3 in acute myeloid leukemia: transformation of myeloid cells by Ras-dependent and Ras-independent mechanisms].
    Müller-Tidow C; Steur C; Mizuki M; Schwäble J; Brandts C; Berdel WE; Serve H
    Dtsch Med Wochenschr; 2002 Oct; 127(42):2195-200. PubMed ID: 12397548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDC25A governs proliferation and differentiation of FLT3-ITD acute myeloid leukemia.
    Bertoli S; Boutzen H; David L; Larrue C; Vergez F; Fernandez-Vidal A; Yuan L; Hospital MA; Tamburini J; Demur C; Delabesse E; Saland E; Sarry JE; Galcera MO; Mansat-De Mas V; Didier C; Dozier C; Récher C; Manenti S
    Oncotarget; 2015 Nov; 6(35):38061-78. PubMed ID: 26515730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of FLT3-ITD kinase contributes to high selectivity of imidazoacridinone C-1311 against FLT3-activated leukemia cells.
    Skwarska A; Augustin E; Beffinger M; Wojtczyk A; Konicz S; Laskowska K; Polewska J
    Biochem Pharmacol; 2015 Jun; 95(4):238-52. PubMed ID: 25896848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flt3-dependent transformation by inactivating c-Cbl mutations in AML.
    Sargin B; Choudhary C; Crosetto N; Schmidt MHH; Grundler R; Rensinghoff M; Thiessen C; Tickenbrock L; Schwäble J; Brandts C; August B; Koschmieder S; Bandi SR; Duyster J; Berdel WE; Müller-Tidow C; Dikic I; Serve H
    Blood; 2007 Aug; 110(3):1004-12. PubMed ID: 17446348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel oncogenic mutations of CBL in human acute myeloid leukemia that activate growth and survival pathways depend on increased metabolism.
    Fernandes MS; Reddy MM; Croteau NJ; Walz C; Weisbach H; Podar K; Band H; Carroll M; Reiter A; Larson RA; Salgia R; Griffin JD; Sattler M
    J Biol Chem; 2010 Oct; 285(42):32596-605. PubMed ID: 20622007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting on glycosylation of mutant FLT3 in acute myeloid leukemia.
    Hu X; Chen F
    Hematology; 2019 Dec; 24(1):651-660. PubMed ID: 31533545
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphoproteome analyses reveal specific implications of Hcls1, p21-activated kinase 1 and Ezrin in proliferation of a myeloid progenitor cell line downstream of wild-type and ITD mutant Fms-like tyrosine kinase 3 receptors.
    Habif G; Grasset MF; Kieffer-Jaquinod S; Kuhn L; Mouchiroud G; Gobert-Gosse S
    J Proteomics; 2013 Jan; 78():231-44. PubMed ID: 23017497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia.
    Pillinger G; Abdul-Aziz A; Zaitseva L; Lawes M; MacEwan DJ; Bowles KM; Rushworth SA
    Sci Rep; 2015 Aug; 5():12949. PubMed ID: 26292723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor.
    Tse KF; Allebach J; Levis M; Smith BD; Bohmer FD; Small D
    Leukemia; 2002 Oct; 16(10):2027-36. PubMed ID: 12357354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation.
    Kiyoi H; Naoe T
    Int J Hematol; 2006 May; 83(4):301-8. PubMed ID: 16757428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.
    Han L; Qiu P; Zeng Z; Jorgensen JL; Mak DH; Burks JK; Schober W; McQueen TJ; Cortes J; Tanner SD; Roboz GJ; Kantarjian HM; Kornblau SM; Guzman ML; Andreeff M; Konopleva M
    Cytometry A; 2015 Apr; 87(4):346-56. PubMed ID: 25598437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutively activated FLT3 phosphorylates BAD partially through pim-1.
    Kim KT; Levis M; Small D
    Br J Haematol; 2006 Sep; 134(5):500-9. PubMed ID: 16869825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia.
    Zhang W; Konopleva M; Shi YX; McQueen T; Harris D; Ling X; Estrov Z; Quintás-Cardama A; Small D; Cortes J; Andreeff M
    J Natl Cancer Inst; 2008 Feb; 100(3):184-98. PubMed ID: 18230792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.