BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16982630)

  • 1. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells.
    Wei Y; Sowers JR; Nistala R; Gong H; Uptergrove GM; Clark SE; Morris EM; Szary N; Manrique C; Stump CS
    J Biol Chem; 2006 Nov; 281(46):35137-46. PubMed ID: 16982630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase.
    Wei Y; Sowers JR; Clark SE; Li W; Ferrario CM; Stump CS
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E345-51. PubMed ID: 18073321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClC-3 promotes angiotensin II-induced reactive oxygen species production in endothelial cells by facilitating Nox2 NADPH oxidase complex formation.
    Liang GZ; Cheng LM; Chen XF; Li YJ; Li XL; Guan YY; Du YH
    Acta Pharmacol Sin; 2018 Nov; 39(11):1725-1734. PubMed ID: 29977005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat.
    Lastra G; Whaley-Connell A; Manrique C; Habibi J; Gutweiler AA; Appesh L; Hayden MR; Wei Y; Ferrario C; Sowers JR
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E110-6. PubMed ID: 18445755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II.
    Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL
    Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.
    Csibi A; Communi D; Müller N; Bottari SP
    PLoS One; 2010 Apr; 5(4):e10070. PubMed ID: 20383279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts.
    Fujii T; Onohara N; Maruyama Y; Tanabe S; Kobayashi H; Fukutomi M; Nagamatsu Y; Nishihara N; Inoue R; Sumimoto H; Shibasaki F; Nagao T; Nishida M; Kurose H
    J Biol Chem; 2005 Jun; 280(24):23041-7. PubMed ID: 15826947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells.
    Izawa Y; Yoshizumi M; Fujita Y; Ali N; Kanematsu Y; Ishizawa K; Tsuchiya K; Obata T; Ebina Y; Tomita S; Tamaki T
    Exp Cell Res; 2005 Aug; 308(2):291-9. PubMed ID: 15921682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase-dependent formation of reactive oxygen species contributes to angiotensin II-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells.
    Chang J; Jiang Z; Zhang H; Zhu H; Zhou SF; Yu X
    Int J Mol Med; 2011 Sep; 28(3):405-12. PubMed ID: 21537828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Pro)renin receptor mediates both angiotensin II-dependent and -independent oxidative stress in neuronal cells.
    Peng H; Li W; Seth DM; Nair AR; Francis J; Feng Y
    PLoS One; 2013; 8(3):e58339. PubMed ID: 23516464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.
    Wang HX; Wu XR; Yang H; Yin CL; Shi LJ; Wang XJ
    PLoS One; 2013; 8(10):e76796. PubMed ID: 24116164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H
    Lu G; Xu C; Tang K; Zhang J; Li Q; Peng L; Wang Y; Huang Z; Gao X
    Biochem Biophys Res Commun; 2017 Jan; 483(1):534-540. PubMed ID: 28011270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression.
    Lastra G; Habibi J; Whaley-Connell AT; Manrique C; Hayden MR; Rehmer J; Patel K; Ferrario C; Sowers JR
    Endocrinology; 2009 Jun; 150(6):2561-8. PubMed ID: 19246535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermedin in Paraventricular Nucleus Attenuates Ang II-Induced Sympathoexcitation through the Inhibition of NADPH Oxidase-Dependent ROS Generation in Obese Rats with Hypertension.
    Kang Y; Ding L; Dai H; Wang F; Zhou H; Gao Q; Xiong X; Zhang F; Song T; Yuan Y; Zhu G; Zhou Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31466304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.
    Tabet F; Schiffrin EL; Callera GE; He Y; Yao G; Ostman A; Kappert K; Tonks NK; Touyz RM
    Circ Res; 2008 Jul; 103(2):149-58. PubMed ID: 18566342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Egg White Ovotransferrin-Derived ACE Inhibitory Peptide Ameliorates Angiotensin II-Stimulated Insulin Resistance in Skeletal Muscle Cells.
    Son M; Chan CB; Wu J
    Mol Nutr Food Res; 2018 Feb; 62(4):. PubMed ID: 29278298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors.
    Giani JF; Gironacci MM; Muñoz MC; Peña C; Turyn D; Dominici FP
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1154-63. PubMed ID: 17496209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol blocks Akt activation in angiotensin II- or EGF-stimulated vascular smooth muscle cells in a redox-independent manner.
    Schreiner CE; Kumerz M; Gesslbauer J; Schachner D; Joa H; Erker T; Atanasov AG; Heiss EH; Dirsch VM
    Cardiovasc Res; 2011 Apr; 90(1):140-7. PubMed ID: 21071431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway.
    Shaw S; Wang X; Redd H; Alexander GD; Isales CM; Marrero MB
    J Biol Chem; 2003 Aug; 278(33):30634-41. PubMed ID: 12777386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.