BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

755 related articles for article (PubMed ID: 16982728)

  • 21. Hypoxia, glucose metabolism and the Warburg's effect.
    Bartrons R; Caro J
    J Bioenerg Biomembr; 2007 Jun; 39(3):223-9. PubMed ID: 17661163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-translational modifications and the Warburg effect.
    Hitosugi T; Chen J
    Oncogene; 2014 Aug; 33(34):4279-85. PubMed ID: 24096483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hypoxia signalling controls metabolic demand.
    Brahimi-Horn MC; Chiche J; Pouysségur J
    Curr Opin Cell Biol; 2007 Apr; 19(2):223-9. PubMed ID: 17303407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cancer's sweet tooth for serine.
    Luo J
    Breast Cancer Res; 2011; 13(6):317. PubMed ID: 22189202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy.
    Anwar S; Shamsi A; Mohammad T; Islam A; Hassan MI
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188568. PubMed ID: 34023419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia.
    Busk M; Horsman MR; Kristjansen PE; van der Kogel AJ; Bussink J; Overgaard J
    Int J Cancer; 2008 Jun; 122(12):2726-34. PubMed ID: 18351643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Warburg effect: a signature of mitochondrial overload.
    Wang Y; Patti GJ
    Trends Cell Biol; 2023 Dec; 33(12):1014-1020. PubMed ID: 37117116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-coding RNAs: Key regulators of aerobic glycolysis in breast cancer.
    Xia M; Feng S; Chen Z; Wen G; Zu X; Zhong J
    Life Sci; 2020 Jun; 250():117579. PubMed ID: 32209425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondria in cancer: not just innocent bystanders.
    Frezza C; Gottlieb E
    Semin Cancer Biol; 2009 Feb; 19(1):4-11. PubMed ID: 19101633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose and lactate metabolism by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Crit Rev Oral Biol Med; 1999; 10(4):487-503. PubMed ID: 10634585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose Metabolism in Cancer.
    Bose S; Le A
    Adv Exp Med Biol; 2018; 1063():3-12. PubMed ID: 29946772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.
    Marchiq I; Pouysségur J
    J Mol Med (Berl); 2016 Feb; 94(2):155-71. PubMed ID: 26099350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
    Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F
    Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
    Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
    Semin Oncol; 2017 Jun; 44(3):198-203. PubMed ID: 29248131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactate as an insidious metabolite due to the Warburg effect.
    Luc R; Tortorella SM; Ververis K; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):835-40. PubMed ID: 25670247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.
    Yu L; Chen X; Wang L; Chen S
    Oncotarget; 2016 Jun; 7(25):38908-38926. PubMed ID: 26918353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Historical perspective of tumor glycolysis: A century with Otto Warburg.
    Bononi G; Masoni S; Di Bussolo V; Tuccinardi T; Granchi C; Minutolo F
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):325-333. PubMed ID: 35809880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.
    Barros LF; Ruminot I; San Martín A; Lerchundi R; Fernández-Moncada I; Baeza-Lehnert F
    Neurochem Res; 2021 Jan; 46(1):15-22. PubMed ID: 31981059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.