These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1698282)

  • 1. Location of the host attachment site for phage HPl within a cluster of Haemophilus influenzae tRNA genes.
    Hauser MA; Scocca JJ
    Nucleic Acids Res; 1990 Sep; 18(17):5305. PubMed ID: 1698282
    [No Abstract]   [Full Text] [Related]  

  • 2. Site-specific integration of the Haemophilus influenzae bacteriophage HP1: location of the boundaries of the phage attachment site.
    Hauser MA; Scocca JJ
    J Bacteriol; 1992 Oct; 174(20):6674-7. PubMed ID: 1383194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the second attachment site for HP1 and S2 bacteriophages in Haemophilus influenzae genome.
    Skowronek K
    Acta Microbiol Pol; 1998; 47(1):7-17. PubMed ID: 9691428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3' end of a putative proline tRNA gene.
    Papp I; Dorgai L; Papp P; Jónás E; Olasz F; Orosz L
    Mol Gen Genet; 1993 Aug; 240(2):258-64. PubMed ID: 7689141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg)(AGG) gene of Streptomyces rimosus.
    Gabriel K; Schmid H; Schmidt U; Rausch H
    Nucleic Acids Res; 1995 Jan; 23(1):58-63. PubMed ID: 7870591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA sequence homology between attB-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of gamma-corynephage.
    Cianciotto N; Serwold-Davis T; Groman N; Ratti G; Rappuoli R
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):299-301. PubMed ID: 2108899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of the bacteriophage HP1c1 genome into the Haemophilus influenzae Rd chromosome in the lysogenic state.
    Waldman AS; Fitzmaurice WP; Scocca JJ
    J Bacteriol; 1986 Jan; 165(1):297-300. PubMed ID: 3484476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequences and properties of the sites involved in lysogenic insertion of the bacteriophage HP1c1 genome into the Haemophilus influenzae chromosome.
    Waldman AS; Goodman SD; Scocca JJ
    J Bacteriol; 1987 Jan; 169(1):238-46. PubMed ID: 3491821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prophage insertion sites.
    Campbell A
    Res Microbiol; 2003 May; 154(4):277-82. PubMed ID: 12798232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The identification of the bacteriophage HP1c1 and S2 integration sites in Haemophilus influenzae Rd by field-inversion gel electrophoresis of large DNA fragments.
    Kauc L; Skowronek K; Goodgal SH
    Acta Microbiol Pol; 1991; 40(1-2):11-26. PubMed ID: 1725088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific integration of the Haemophilus influenzae bacteriophage HP1. Identification of the points of recombinational strand exchange and the limits of the host attachment site.
    Hauser MA; Scocca JJ
    J Biol Chem; 1992 Apr; 267(10):6859-64. PubMed ID: 1551893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA.
    Blaha B; Semsey S; Ferenczi S; Csiszovszki Z; Papp PP; Orosz L
    Mol Microbiol; 2004 Nov; 54(3):742-54. PubMed ID: 15491364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage HP2 of Haemophilus influenzae.
    Williams BJ; Golomb M; Phillips T; Brownlee J; Olson MV; Smith AL
    J Bacteriol; 2002 Dec; 184(24):6893-905. PubMed ID: 12446640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysogenic phages of Clostridium perfringens: mapping of the chromosomal attachment sites.
    Canard B; Cole ST
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):323-6. PubMed ID: 2323543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major spontaneous genomic rearrangements in Haemophilus influenzae S2 and HP1c1 bacteriophages.
    Piekarowicz A; Brzeziński R; Smorawińska M; Kauc L; Skowronek K; Lenarczyk M; Gołembiowska M; Siwińska M
    Gene; 1986; 49(1):111-8. PubMed ID: 3032744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification of DNA at a prophage attachment site in Haemophilus influenzae.
    Kauc L; Goodgal SH
    J Bacteriol; 1989 Apr; 171(4):1898-903. PubMed ID: 2784790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 10Sa RNA (tmRNA) homologues from the cyanobacterium Synechococcus sp. strain PCC6301 and related organisms.
    Watanabe T; Sugita M; Sugiura M
    Biochim Biophys Acta; 1998 Mar; 1396(1):97-104. PubMed ID: 9524235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase variation of H. influenzae fimbriae: transcriptional control of two divergent genes through a variable combined promoter region.
    van Ham SM; van Alphen L; Mooi FR; van Putten JP
    Cell; 1993 Jun; 73(6):1187-96. PubMed ID: 8513502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors.
    Lauer P; Chow MY; Loessner MJ; Portnoy DA; Calendar R
    J Bacteriol; 2002 Aug; 184(15):4177-86. PubMed ID: 12107135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the temperate phage vB_RleM_PPF1 and its site-specific integration into the Rhizobium leguminosarum F1 genome.
    Halmillawewa AP; Restrepo-Córdoba M; Perry BJ; Yost CK; Hynes MF
    Mol Genet Genomics; 2016 Feb; 291(1):349-62. PubMed ID: 26377943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.