These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16982838)

  • 1. Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli.
    Ouyang Z; Isaacson R
    Infect Immun; 2006 Dec; 74(12):6949-56. PubMed ID: 16982838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    Mol Microbiol; 2008 Dec; 70(5):1261-73. PubMed ID: 18990190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11.
    Bearden SW; Staggs TM; Perry RD
    J Bacteriol; 1998 Mar; 180(5):1135-47. PubMed ID: 9495751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of the outer membrane of escherichia coli: phage and colicin receptors as components of iron uptake systems.
    Braun V; Hancock RE; Hantke K; Hartmann A
    J Supramol Struct; 1976; 5(1):37-58. PubMed ID: 136550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli.
    Patzer SI; Hantke K
    Mol Microbiol; 1998 Jun; 28(6):1199-210. PubMed ID: 9680209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Novel Regulator for the Escherichia coli fit Iron Transport System.
    Ouyang Z; Isaacson R
    Open Microbiol J; 2008; 2():94-9. PubMed ID: 19088918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes.
    Vajrala N; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Arch Microbiol; 2010 Nov; 192(11):899-908. PubMed ID: 20737137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sigma(s)-dependent regulation of yehZYXW, which encodes a putative osmoprotectant ABC transporter of Escherichia coli.
    Checroun C; Gutierrez C
    FEMS Microbiol Lett; 2004 Jul; 236(2):221-6. PubMed ID: 15251200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens.
    Mahren S; Schnell H; Braun V
    Arch Microbiol; 2005 Nov; 184(3):175-86. PubMed ID: 16193283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system.
    Gong S; Bearden SW; Geoffroy VA; Fetherston JD; Perry RD
    Infect Immun; 2001 May; 69(5):2829-37. PubMed ID: 11292695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island.
    Zhou D; Hardt WD; Galán JE
    Infect Immun; 1999 Apr; 67(4):1974-81. PubMed ID: 10085045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae.
    Wyckoff EE; Mey AR; Leimbach A; Fisher CF; Payne SM
    J Bacteriol; 2006 Sep; 188(18):6515-23. PubMed ID: 16952942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum.
    Mouriño S; Osorio CR; Lemos ML
    J Bacteriol; 2004 Sep; 186(18):6159-67. PubMed ID: 15342586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Haemophilus influenzae hFbpABC Fe3+ transporter: analysis of the membrane permease and development of a gallium-based screen for mutants.
    Anderson DS; Adhikari P; Weaver KD; Crumbliss AL; Mietzner TA
    J Bacteriol; 2007 Jul; 189(14):5130-41. PubMed ID: 17496104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants.
    Vega DE; Young KD
    Mol Microbiol; 2014 Feb; 91(3):508-21. PubMed ID: 24330203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of antibody and enterobactin in controlling growth of Escherichia coli in human milk and acquisition of lactoferrin- and transferrin-bound iron by Escherichia coli.
    Brock JH; Pickering MG; McDowall MC; Deacon AG
    Infect Immun; 1983 May; 40(2):453-9. PubMed ID: 6220972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overcoming Iron Deficiency of an Escherichia coli
    Qiu N; Misra R
    J Bacteriol; 2019 Sep; 201(17):. PubMed ID: 31235517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli.
    Braun V; Herrmann C
    J Bacteriol; 2007 Oct; 189(19):6913-8. PubMed ID: 17660286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand.
    Wyckoff EE; Payne SM
    Mol Microbiol; 2011 Sep; 81(6):1446-58. PubMed ID: 21790806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein II influences ferrichrome-iron transport in Escherichia coli K12.
    Coulton JW; Braun V
    J Gen Microbiol; 1979 Jan; 110(1):211-20. PubMed ID: 372490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.