These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 16983313)
1. Optimization of ribonucleic acid detection from archival Guinea pig temporal bone specimens. Hall KL; Pitts DR; Anne S; Semaan MT; Alagramam KN; Megerian CA Otol Neurotol; 2007 Jan; 28(1):116-23. PubMed ID: 16983313 [TBL] [Abstract][Full Text] [Related]
2. Molecular changes associated with the endolymphatic hydrops model. Anne S; Kisley LB; Tajuddin ST; Leahy P; Alagramam KN; Megerian CA Otol Neurotol; 2007 Sep; 28(6):834-41. PubMed ID: 17468674 [TBL] [Abstract][Full Text] [Related]
3. Amplification of RNA from archival human temporal bone sections. Ohtani F; Furuta Y; Iino Y; Inuyama Y; Fukuda S Laryngoscope; 1999 Apr; 109(4):617-20. PubMed ID: 10201751 [TBL] [Abstract][Full Text] [Related]
4. Gene expression analysis of distinct populations of cells isolated from mouse and human inner ear FFPE tissue using laser capture microdissection--a technical report based on preliminary findings. Pagedar NA; Wang W; Chen DH; Davis RR; Lopez I; Wright CG; Alagramam KN Brain Res; 2006 May; 1091(1):289-99. PubMed ID: 16529721 [TBL] [Abstract][Full Text] [Related]
5. Effects of vasopressin on gene expression in rat inner ear. Gu FM; Han HL; Zhang LS Hear Res; 2006 Dec; 222(1-2):70-8. PubMed ID: 17070001 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of mRNA in human temporal bones. Kimura Y; Kubo S; Koda H; Noguchi Y; Sawabe M; Maruyama N; Kitamura K Acta Otolaryngol; 2007 Oct; 127(10):1024-30. PubMed ID: 17851964 [TBL] [Abstract][Full Text] [Related]
7. RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection--a technical report. Kimura Y; Kubo S; Koda H; Shigemoto K; Sawabe M; Kitamura K Hear Res; 2013 Aug; 302():26-31. PubMed ID: 23660400 [TBL] [Abstract][Full Text] [Related]
8. Characterization of DNA extracted from archival celloidin-embedded human temporal bone sections. Wackym PA; Chen CT; Kerner MM; Bell TS Am J Otol; 1995 Jan; 16(1):14-20. PubMed ID: 8579172 [TBL] [Abstract][Full Text] [Related]
9. Technical report: laser microdissection of cochlear structures from celloidin embedded human temporal bone tissues and detection of the mitochondrial DNA common deletion using real time PCR. Markaryan A; Nelson EG; Tretiakova M; Hinojosa R Hear Res; 2008 Oct; 244(1-2):1-6. PubMed ID: 18706496 [TBL] [Abstract][Full Text] [Related]
10. Optimized protocol for gene expression analysis in formalin-fixed, paraffin-embedded tissue using real-time quantitative polymerase chain reaction. Votavova H; Forsterova K; Stritesky J; Velenska Z; Trneny M Diagn Mol Pathol; 2009 Sep; 18(3):176-82. PubMed ID: 19704263 [TBL] [Abstract][Full Text] [Related]
11. Expression and sequences of genes encoding glutamate receptors and transporters in primate retina determined using 3'-end amplification polymerase chain reaction. Hanna MC; Calkins DJ Mol Vis; 2006 Aug; 12():961-76. PubMed ID: 16943768 [TBL] [Abstract][Full Text] [Related]
12. Amplification of mitochondrial DNA from archival temporal bone specimens. Simpson TA; Smith RJ Laryngoscope; 1995 Jan; 105(1):28-34. PubMed ID: 7837910 [TBL] [Abstract][Full Text] [Related]
13. Optimal procedure for extracting RNA from human ocular tissues and expression profiling of the congenital glaucoma gene FOXC1 using quantitative RT-PCR. Wang WH; McNatt LG; Shepard AR; Jacobson N; Nishimura DY; Stone EM; Sheffield VC; Clark AF Mol Vis; 2001 Apr; 7():89-94. PubMed ID: 11320352 [TBL] [Abstract][Full Text] [Related]
14. Optimization of RNA extraction from formalin-fixed, paraffin-embedded lymphoid tissues. Chen J; Byrne GE; Lossos IS Diagn Mol Pathol; 2007 Jun; 16(2):61-72. PubMed ID: 17525674 [TBL] [Abstract][Full Text] [Related]
15. The use of housekeeping genes (HKG) as an internal control for the detection of gene expression by quantitative real-time RT-PCR. Ullmannová V; Haskovec C Folia Biol (Praha); 2003; 49(6):211-6. PubMed ID: 14748434 [TBL] [Abstract][Full Text] [Related]
16. A rapid and simple method for the detection of prostate-specific antigen mRNA in archival tissue specimens using a reverse transcription-polymerase chain reaction assay. Edelstein RA; Krane RJ; Babayan RK; de las Morenas A; Moreland RB Urology; 1995 Apr; 45(4):597-603. PubMed ID: 7536367 [TBL] [Abstract][Full Text] [Related]
17. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. Cankar K; Stebih D; Dreo T; Zel J; Gruden K BMC Biotechnol; 2006 Aug; 6():37. PubMed ID: 16907967 [TBL] [Abstract][Full Text] [Related]
18. Real-time RT-PCR for the detection of beta-adrenoceptor messenger RNAs in small human endomyocardial biopsies. Moniotte S; Vaerman JL; Kockx MM; Larrouy D; Langin D; Noirhomme P; Balligand JL J Mol Cell Cardiol; 2001 Dec; 33(12):2121-33. PubMed ID: 11735259 [TBL] [Abstract][Full Text] [Related]
19. RNA isolation and quantitative PCR from HOPE- and formalin-fixed bovine lymph node tissues. Witchell J; Varshney D; Gajjar T; Wangoo A; Goyal M Pathol Res Pract; 2008; 204(2):105-11. PubMed ID: 17981405 [TBL] [Abstract][Full Text] [Related]