BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16983382)

  • 1. Cyclization of natural products.
    O'Connor SE
    Nat Chem Biol; 2006 Oct; 2(10):511-2. PubMed ID: 16983382
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis for macrolactonization by the pikromycin thioesterase.
    Akey DL; Kittendorf JD; Giraldes JW; Fecik RA; Sherman DH; Smith JL
    Nat Chem Biol; 2006 Oct; 2(10):537-42. PubMed ID: 16969372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels.
    Giraldes JW; Akey DL; Kittendorf JD; Sherman DH; Smith JL; Fecik RA
    Nat Chem Biol; 2006 Oct; 2(10):531-6. PubMed ID: 16969373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and biological evaluation of acyl protein thioesterase 1 (APT1) inhibitors.
    Deck P; Pendzialek D; Biel M; Wagner M; Popkirova B; Ludolph B; Kragol G; Kuhlmann J; Giannis A; Waldmann H
    Angew Chem Int Ed Engl; 2005 Aug; 44(31):4975-80. PubMed ID: 16003812
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphonic acid-containing analogues of mycophenolic acid as inhibitors of IMPDH.
    Watkins WJ; Chen JM; Cho A; Chong L; Collins N; Fardis M; Huang W; Hung M; Kirschberg T; Lee WA; Liu X; Thomas W; Xu J; Zeynalzadegan A; Zhang J
    Bioorg Med Chem Lett; 2006 Jul; 16(13):3479-83. PubMed ID: 16621550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoenzymatic synthesis of the polyketide macrolactone 10-deoxymethynolide.
    Aldrich CC; Venkatraman L; Sherman DH; Fecik RA
    J Am Chem Soc; 2005 Jun; 127(25):8910-1. PubMed ID: 15969542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.
    Urscher M; Deponte M
    Biol Chem; 2009 Nov; 390(11):1171-83. PubMed ID: 19663684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biological evaluation of potential new inhibitors of the bacterial transferase MraY with a β-ketophosphonate structure.
    Auberger N; Frlan R; Al-Dabbagh B; Bouhss A; Crouvoisier M; Gravier-Pelletier C; Le Merrer Y
    Org Biomol Chem; 2011 Dec; 9(24):8301-12. PubMed ID: 22042341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi.
    Morishita Y; Zhang H; Taniguchi T; Mori K; Asai T
    Org Lett; 2019 Jun; 21(12):4788-4792. PubMed ID: 31180682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitors of phenylalanine ammonia-lyase: substituted derivatives of 2-aminoindane-2-phosphonic acid and 1-aminobenzylphosphonic acid.
    Miziak P; Zoń J; Amrhein N; Gancarz R
    Phytochemistry; 2007 Feb; 68(4):407-15. PubMed ID: 17215011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated phosphonates: synthesis and biomedical application.
    Romanenko VD; Kukhar VP
    Chem Rev; 2006 Sep; 106(9):3868-935. PubMed ID: 16967924
    [No Abstract]   [Full Text] [Related]  

  • 12. Sequential asymmetric polyketide heterocyclization catalyzed by a single cytochrome P450 monooxygenase (AurH).
    Richter ME; Traitcheva N; Knüpfer U; Hertweck C
    Angew Chem Int Ed Engl; 2008; 47(46):8872-5. PubMed ID: 18855960
    [No Abstract]   [Full Text] [Related]  

  • 13. Enzymatic macrolactonization in the presence of DNA leading to triostin A analogs.
    Koketsu K; Oguri H; Watanabe K; Oikawa H
    Chem Biol; 2008 Aug; 15(8):818-28. PubMed ID: 18721753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design.
    Hedberg C; Dekker FJ; Rusch M; Renner S; Wetzel S; Vartak N; Gerding-Reimers C; Bon RS; Bastiaens PI; Waldmann H
    Angew Chem Int Ed Engl; 2011 Oct; 50(42):9832-7. PubMed ID: 21905185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphenyl amide p38 kinase inhibitors 1: Discovery and binding mode.
    Angell RM; Bamborough P; Cleasby A; Cockerill SG; Jones KL; Mooney CJ; Somers DO; Walker AL
    Bioorg Med Chem Lett; 2008 Jan; 18(1):318-23. PubMed ID: 18006306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and pharmacological activity of novel enantiomerically pure phosphonic acid-based NAALADase inhibitors.
    Ding P; Helquist P; Miller MJ
    Org Biomol Chem; 2007 Mar; 5(5):826-31. PubMed ID: 17315070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beta-ketophosphonates as beta-lactamase inhibitors: Intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase.
    Perumal SK; Adediran SA; Pratt RF
    Bioorg Med Chem; 2008 Jul; 16(14):6987-94. PubMed ID: 18572409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformationally restricted hydantoin-based peptidomimetics as inhibitors of caspase-3 with basic groups allowed at the S3 enzyme subsite.
    Vázquez J; García-Jareño A; Mondragón L; Rubio-Martinez J; Pérez-Payá E; Albericio F
    ChemMedChem; 2008 Jun; 3(6):979-85. PubMed ID: 18393268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemistry. Loop grafting and the origins of enzyme species.
    Tawfik DS
    Science; 2006 Jan; 311(5760):475-6. PubMed ID: 16439649
    [No Abstract]   [Full Text] [Related]  

  • 20. Bivalent transition-state analogue inhibitors of human glyoxalase I.
    Zheng ZB; Creighton DJ
    Org Lett; 2003 Dec; 5(25):4855-8. PubMed ID: 14653691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.