These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 16983431)
1. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front. D'Sa EJ; Miller RL; Del Castillo C Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431 [TBL] [Abstract][Full Text] [Related]
2. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties. Al Shehhi MR; Gherboudj I; Ghedira H J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493 [TBL] [Abstract][Full Text] [Related]
3. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach. Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990 [TBL] [Abstract][Full Text] [Related]
4. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758 [TBL] [Abstract][Full Text] [Related]
5. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters. Lin J; Cao W; Wang G; Hu S Appl Opt; 2013 Jun; 52(18):4249-57. PubMed ID: 23842167 [TBL] [Abstract][Full Text] [Related]
6. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning. Kolluru S; Tiwari SP Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889 [TBL] [Abstract][Full Text] [Related]
7. Model for the interpretation of hyperspectral remote-sensing reflectance. Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974 [TBL] [Abstract][Full Text] [Related]
8. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms. Gonçalves-Araujo R; Rabe B; Peeken I; Bracher A PLoS One; 2018; 13(1):e0190838. PubMed ID: 29304182 [TBL] [Abstract][Full Text] [Related]
9. Variation of particulate organic carbon and its relationship with bio-optical properties during a phytoplankton bloom in the Pearl River estuary. Wang G; Zhou W; Cao W; Yin J; Yang Y; Sun Z; Zhang Y; Zhao J Mar Pollut Bull; 2011 Sep; 62(9):1939-47. PubMed ID: 21794879 [TBL] [Abstract][Full Text] [Related]
10. Optical assessment of particle size and composition in the Santa Barbara Channel, California. Kostadinov TS; Siegel DA; Maritorena S; Guillocheau N Appl Opt; 2012 Jun; 51(16):3171-89. PubMed ID: 22695548 [TBL] [Abstract][Full Text] [Related]
11. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events. Pahlevan N; Lee Z; Hu C; Schott JR Appl Opt; 2014 Feb; 53(4):648-65. PubMed ID: 24514182 [TBL] [Abstract][Full Text] [Related]
12. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results. Dall'Olmo G; Gitelson AA Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105 [TBL] [Abstract][Full Text] [Related]
13. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China. Wu G; Cui L; Duan H; Fei T; Liu Y Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987 [TBL] [Abstract][Full Text] [Related]
14. [Optical characteristics of colored dissolved organic material (CDOM) in Yangtze Estuary]. Zhu WJ; Shen F; Hong GL Huan Jing Ke Xue; 2010 Oct; 31(10):2292-8. PubMed ID: 21229734 [TBL] [Abstract][Full Text] [Related]
16. [Seasonal changes of optical absorption properties of river and lake in East Liaohe River basin, Northeast China]. Song YY; Su DH; Shao TT Ying Yong Sheng Tai Xue Bao; 2017 Jun; 28(6):2013-2023. PubMed ID: 29745166 [TBL] [Abstract][Full Text] [Related]
17. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay. Le C; Hu C Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799 [TBL] [Abstract][Full Text] [Related]
18. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS. Blakey T; Melesse A; Sukop MC; Tachiev G; Whitman D; Miralles-Wilhelm F Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775626 [TBL] [Abstract][Full Text] [Related]
19. Comparisons of optical properties of the coastal ocean derived from satellite ocean color and in situ measurements. Chang GC; Gould RW Opt Express; 2006 Oct; 14(22):10149-63. PubMed ID: 19529411 [TBL] [Abstract][Full Text] [Related]
20. Variability of apparent and inherent optical properties of sediment-laden waters in large river basins - lessons from in situ measurements and bio-optical modeling. Pinet S; Martinez JM; Ouillon S; Lartiges B; Villar RE Opt Express; 2017 Apr; 25(8):A283-A310. PubMed ID: 28437896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]