These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16983435)
1. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. Sugimoto N; Lee CH Appl Opt; 2006 Oct; 45(28):7468-74. PubMed ID: 16983435 [TBL] [Abstract][Full Text] [Related]
2. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. Sakai T; Nagai T; Nakazato M; Mano Y; Matsumura T Appl Opt; 2003 Dec; 42(36):7103-16. PubMed ID: 14717284 [TBL] [Abstract][Full Text] [Related]
3. Investigation of aerosol absorption with dual-polarization lidar observations. Huang Z; Qi S; Zhou T; Dong Q; Ma X; Zhang S; Bi J; Shi J Opt Express; 2020 Mar; 28(5):7028-7035. PubMed ID: 32225938 [TBL] [Abstract][Full Text] [Related]
4. Canadian Biomass Burning Aerosol Properties Modification during a Long-Ranged Event on August 2018. Papanikolaou CA; Giannakaki E; Papayannis A; Mylonaki M; Soupiona O Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971973 [TBL] [Abstract][Full Text] [Related]
5. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. Liu Z; Sugimoto N; Murayama T Appl Opt; 2002 May; 41(15):2760-7. PubMed ID: 12027162 [TBL] [Abstract][Full Text] [Related]
6. Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method. Luo T; Wang Z; Ferrare RA; Hostetler CA; Yuan R; Zhang D Opt Express; 2015 Jun; 23(11):14095-107. PubMed ID: 26072778 [TBL] [Abstract][Full Text] [Related]
7. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Papayannis A; Nicolae D; Kokkalis P; Binietoglou I; Talianu C; Belegante L; Tsaknakis G; Cazacu MM; Vetres I; Ilic L Sci Total Environ; 2014 Dec; 500-501():277-94. PubMed ID: 25226073 [TBL] [Abstract][Full Text] [Related]
8. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application. Huang Z; Shen X; Tang S; Zhou T; Dong Q; Zhang S; Li M; Wang Y Opt Express; 2023 Mar; 31(6):10541-10553. PubMed ID: 37157599 [TBL] [Abstract][Full Text] [Related]
9. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources. Huang Z; Li M; Bi J; Shen X; Zhang S; Liu Q Opt Express; 2023 May; 31(10):16909-16919. PubMed ID: 37157759 [TBL] [Abstract][Full Text] [Related]
10. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611 [TBL] [Abstract][Full Text] [Related]
11. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. Sasano Y; Browell EV Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724 [TBL] [Abstract][Full Text] [Related]
12. Lidar Ratio-Depolarization Ratio Relations of Atmospheric Dust Aerosols: The Super-Spheroid Model and High Spectral Resolution Lidar Observations. Kong S; Sato K; Bi L J Geophys Res Atmos; 2022 Feb; 127(4):e2021JD035629. PubMed ID: 35865334 [TBL] [Abstract][Full Text] [Related]
13. Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations. Müller D; Veselovskii I; Kolgotin A; Tesche M; Ansmann A; Dubovik O Appl Opt; 2013 May; 52(14):3178-202. PubMed ID: 23669830 [TBL] [Abstract][Full Text] [Related]
14. Suggestion for qualitative lidar identification of different types of aerosol using the two-wavelength rotational Raman and elastic lidar. Kim D; Cha H Opt Lett; 2006 Oct; 31(19):2915-7. PubMed ID: 16969421 [TBL] [Abstract][Full Text] [Related]
15. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements. Perrone MR; Burlizzi P Environ Sci Pollut Res Int; 2016 Jul; 23(14):14123-46. PubMed ID: 27048326 [TBL] [Abstract][Full Text] [Related]
16. New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African Monsoon Multidisciplinary Analysis. Chazette P; Sanak J; Dulac F Environ Sci Technol; 2007 Dec; 41(24):8335-41. PubMed ID: 18200860 [TBL] [Abstract][Full Text] [Related]
17. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations. Chen B; Yamada M; Iwasaka Y; Zhang D; Wang H; Wang Z; Lei H; Shi G Environ Geochem Health; 2015 Oct; 37(5):791-800. PubMed ID: 25537163 [TBL] [Abstract][Full Text] [Related]
18. Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships. Perrone MR; Romano S; Orza JA Environ Sci Pollut Res Int; 2015 Nov; 22(21):16570-89. PubMed ID: 26077321 [TBL] [Abstract][Full Text] [Related]
19. Spectrally dependent linear depolarization and lidar ratios for nonspherical smoke aerosols. Liu L; Mishchenko MI J Quant Spectrosc Radiat Transf; 2020 Jun; 248():. PubMed ID: 33362295 [TBL] [Abstract][Full Text] [Related]
20. Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization. De Tomasi F; Blanco A; Perrone MR Appl Opt; 2003 Mar; 42(9):1699-709. PubMed ID: 12665101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]