These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16983444)

  • 1. Fiber-optic fluorescence correlation spectrometer.
    Garai K; Muralidhar M; Maiti S
    Appl Opt; 2006 Oct; 45(28):7538-42. PubMed ID: 16983444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber.
    Chang YC; Ye JY; Thomas T; Chen Y; Baker JR; Norris TB
    Opt Express; 2008 Aug; 16(17):12640-9. PubMed ID: 18711501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical fiber-based fluorescent viscosity sensor.
    Haidekker MA; Akers WJ; Fischer D; Theodorakis EA
    Opt Lett; 2006 Sep; 31(17):2529-31. PubMed ID: 16902608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media.
    Liu Q; Ramanujam N
    Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.
    Lu G; Lei FH; Angiboust JF; Manfait M
    Eur Biophys J; 2010 Apr; 39(5):855-60. PubMed ID: 19575194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCD based fiber-optic spectrometer detection.
    Kapoor R
    Methods Mol Biol; 2009; 503():435-45. PubMed ID: 19151957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes.
    Afshar V S; Ruan Y; Warren-Smith SC; Monro TM
    Opt Lett; 2008 Jul; 33(13):1473-5. PubMed ID: 18594669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media.
    Amelink A; Bard MP; Burgers SA; Sterenborg HJ
    Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting amyloid-beta aggregation with fiber-based fluorescence correlation spectroscopy.
    Garai K; Sureka R; Maiti S
    Biophys J; 2007 Apr; 92(7):L55-7. PubMed ID: 17237197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical probe based on double-clad optical fiber for fluorescence spectroscopy.
    Wang L; Choi HY; Jung Y; Lee BH; Kim KT
    Opt Express; 2007 Dec; 15(26):17681-9. PubMed ID: 19551064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization and dynamic size evaluation of nanoparticles in solution by single optical fiber-illuminated video microscope analysis.
    Suzuto M; Nakamura A; Yamanishi Y; Suzaki E; Kataoka K; Masujima T
    Nanomedicine (Lond); 2007 Feb; 2(1):63-70. PubMed ID: 17716191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of evanescent wave all-fiber immunosensor for environmental water analysis.
    Long F; He M; Shi HC; Zhu AN
    Biosens Bioelectron; 2008 Feb; 23(7):952-8. PubMed ID: 17980575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles.
    Ng MY; Liu WC
    Opt Express; 2009 Mar; 17(7):5867-78. PubMed ID: 19333356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue.
    Schwarz RA; Arifler D; Chang SK; Pavlova I; Hussain IA; Mack V; Knight B; Richards-Kortum R; Gillenwater AM
    Opt Lett; 2005 May; 30(10):1159-61. PubMed ID: 15945140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency and side-viewing micro fiber optic probe for in-vivo diffuse reflectance measurements of human epithelial tissues.
    Garcia-Uribe A; Balareddy KC; Chang CC; Yapici MK; Zou J; Wang LV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():757-60. PubMed ID: 19964486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumentation as a source of variability in the application of fluorescence spectroscopic devices for detecting cervical neoplasia.
    Pikkula BM; Shuhatovich O; Price RL; Serachitopol DM; Follen M; McKinnon N; MacAulay C; Richards-Kortum R; Lee JS; Atkinson EN; Cox DD
    J Biomed Opt; 2007; 12(3):034014. PubMed ID: 17614722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe.
    Schwarz RA; Gao W; Daye D; Williams MD; Richards-Kortum R; Gillenwater AM
    Appl Opt; 2008 Feb; 47(6):825-34. PubMed ID: 18288232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid flow velocimeter measurements of transparent and turbid liquids in a microchannel using a transmission grating.
    Kuraya M; Katayama K; Kitamori T
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026102. PubMed ID: 18315334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.