These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 16983450)

  • 1. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker.
    Sonia ; Saini R; Singh RP; Jaiwal PK
    Plant Cell Rep; 2007 Feb; 26(2):187-98. PubMed ID: 16983450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil.
    Zambre M; Goossens A; Cardona C; Van Montagu M; Terryn N; Angenon G
    Theor Appl Genet; 2005 Mar; 110(5):914-24. PubMed ID: 15702345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successful recovery of transgenic cowpea (Vigna unguiculata) using the 6-phosphomannose isomerase gene as the selectable marker.
    Bakshi S; Saha B; Roy NK; Mishra S; Panda SK; Sahoo L
    Plant Cell Rep; 2012 Jun; 31(6):1093-103. PubMed ID: 22327900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.).
    Song GQ; Han X; Wiersma AT; Zong X; Awale HE; Kelly JD
    PLoS One; 2020; 15(3):e0229909. PubMed ID: 32134988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtaining of transgenic French bean plants (Phaseolus vulgaris L.) resistant to the herbicide pursuit by Agrobacterium-mediated transformation.
    Nifantova SN; Komarnickiy IK; Kuchuk NV
    Tsitol Genet; 2011; 45(2):41-5. PubMed ID: 21568221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection.
    RamanaRao MV; Veluthambi K
    Plant Cell Rep; 2010 May; 29(5):473-83. PubMed ID: 20204372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds.
    Manickavasagam M; Ganapathi A; Anbazhagan VR; Sudhakar B; Selvaraj N; Vasudevan A; Kasthurirengan S
    Plant Cell Rep; 2004 Sep; 23(3):134-43. PubMed ID: 15133712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.
    Saini R; Sonia ; Jaiwal PK
    Plant Cell Rep; 2003 Jun; 21(9):851-9. PubMed ID: 12789502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic Acacia sinuata from Agrobacterium tumefaciens-mediated transformation of hypocotyls.
    Vengadesan G; Amutha S; Muruganantham M; Anand RP; Ganapathi A
    Plant Cell Rep; 2006 Nov; 25(11):1174-80. PubMed ID: 16807750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium mediated transformation of Vigna sesquipedalis Koern (asparagus bean).
    Ignacimuthu S
    Indian J Exp Biol; 2000 May; 38(5):493-8. PubMed ID: 11272416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cowpea [Vigna unguiculata (L.) Walp].
    Behura R; Kumar S; Saha B; Panda MK; Dey M; Sadhukhan A; Mishra S; Alam S; Sahoo DP; Sugla T; Sahoo L
    Methods Mol Biol; 2015; 1223():255-64. PubMed ID: 25300846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of oil palm using Agrobacterium tumefaciens.
    Izawati AM; Parveez GK; Masani MY
    Methods Mol Biol; 2012; 847():177-88. PubMed ID: 22351008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila.
    Li HQ; Xu J; Chen L; Li MR
    Plant Cell Rep; 2007 Oct; 26(10):1785-9. PubMed ID: 17551729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-needle-assisted transformation of soybean cotyledonary node cells.
    Xue RG; Xie HF; Zhang B
    Biotechnol Lett; 2006 Oct; 28(19):1551-7. PubMed ID: 16937246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik).
    Akcay UC; Mahmoudian M; Kamci H; Yucel M; Oktem HA
    Plant Cell Rep; 2009 Mar; 28(3):407-17. PubMed ID: 19083242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.).
    Egnin M; Mora A; Prakash CS
    In Vitro Cell Dev Biol Plant; 1998; 34(4):310-8. PubMed ID: 11760772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.).
    Han JS; Kim CK; Park SH; Hirschi KD; Mok I
    Plant Cell Rep; 2005 Mar; 23(10-11):692-8. PubMed ID: 15480686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency.
    Li B; Xie C; Qiu H
    Plant Cell Rep; 2009 Mar; 28(3):373-86. PubMed ID: 19018535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.
    Yang J; Yi J; Yang C; Li C
    Tree Physiol; 2013 Jun; 33(6):628-39. PubMed ID: 23771952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata.
    Yadav SK; Katikala S; Yellisetty V; Kannepalle A; Narayana JL; Maddi V; Mandapaka M; Shanker AK; Bandi V; Bharadwaja KP
    Springerplus; 2012 Dec; 1(1):59. PubMed ID: 23420384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.