These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1698349)

  • 1. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824.
    Annous BA; Blaschek HP
    Appl Environ Microbiol; 1990 Aug; 56(8):2559-61. PubMed ID: 1698349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity.
    Annous BA; Blaschek HP
    Appl Environ Microbiol; 1991 Sep; 57(9):2544-8. PubMed ID: 1722664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct mechanism of activation of two transcription factors, AmyR and MalR, involved in amylolytic enzyme production in Aspergillus oryzae.
    Suzuki K; Tanaka M; Konno Y; Ichikawa T; Ichinose S; Hasegawa-Shiro S; Shintani T; Gomi K
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1805-15. PubMed ID: 25487891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of starch granules by some amylolytic bacteria from the rumen of sheep.
    Walker GJ; Hope PM
    Biochem J; 1964 Feb; 90(2):398-408. PubMed ID: 5834249
    [No Abstract]   [Full Text] [Related]  

  • 5. Endocytosis of a maltose permease is induced when amylolytic enzyme production is repressed in Aspergillus oryzae.
    Hiramoto T; Tanaka M; Ichikawa T; Matsuura Y; Hasegawa-Shiro S; Shintani T; Gomi K
    Fungal Genet Biol; 2015 Sep; 82():136-44. PubMed ID: 26117687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum.
    Hyun HH; Zeikus JG
    J Bacteriol; 1985 Dec; 164(3):1146-52. PubMed ID: 3934138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylolytic activity of selected species of ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1988 Mar; 54(3):772-6. PubMed ID: 2454075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene.
    Kim AY; Attwood GT; Holt SM; White BA; Blaschek HP
    Appl Environ Microbiol; 1994 Jan; 60(1):337-40. PubMed ID: 8117087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable amylolytic enzymes from a new clostridium isolate.
    Madi E; Antranikian G; Ohmiya K; Gottschalk G
    Appl Environ Microbiol; 1987 Jul; 53(7):1661-7. PubMed ID: 16347392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a maltose transport system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Winters GT; Mitchell WJ
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):298-306. PubMed ID: 11781805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of amylase by Arthrobacter psychrolactophilus.
    Smith MR; Zahnley JC
    J Ind Microbiol Biotechnol; 2005 Jul; 32(7):277-83. PubMed ID: 15931519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes.
    Hyun HH; Zeikus JG
    J Bacteriol; 1985 Dec; 164(3):1162-70. PubMed ID: 2415505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase.
    Yu L; Xu M; Tang IC; Yang ST
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):6155-65. PubMed ID: 26002632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and distribution of amylases during vegetative cell growth and sporulation of Clostridium perfringens.
    Shih NJ; Labbé RG
    Can J Microbiol; 1996 Jul; 42(7):628-33. PubMed ID: 8764679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production by Clostridium acetobutylicum ATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9.
    López-Contreras AM; Martens AA; Szijarto N; Mooibroek H; Claassen PA; van der Oost J; de Vos WM
    Appl Environ Microbiol; 2003 Feb; 69(2):869-77. PubMed ID: 12571006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases.
    Peixoto SC; Jorge JA; Terenzi HF; Polizeli Mde L
    Int Microbiol; 2003 Dec; 6(4):269-73. PubMed ID: 12920607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starch degradation by the mould Trichoderma viride. I. The mechanism of starch degradation.
    Schellart JA; Visser FM; Zandstra T; Middelhoven WJ
    Antonie Van Leeuwenhoek; 1976; 42(3):229-38. PubMed ID: 10832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and cellular localization of amylases of rabbit cecal bacteria.
    Sirotek K; Marounek M; Suchorská O
    Folia Microbiol (Praha); 2006; 51(4):309-12. PubMed ID: 17007433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824.
    Paquet V; Croux C; Goma G; Soucaille P
    Appl Environ Microbiol; 1991 Jan; 57(1):212-8. PubMed ID: 8967771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, an amylolytic lactobacillus isolated from sour starch cassava fermentation.
    Guyot JP; Morlon-Guyot J
    Int J Food Microbiol; 2001 Aug; 67(3):217-25. PubMed ID: 11518431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.