These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16984194)

  • 1. Methane dehydrogenation on Rh@Cu(111): a first-principles study of a model catalyst.
    Kokalj A; Bonini N; de Gironcoli S; Sbraccia C; Fratesi G; Baroni S
    J Am Chem Soc; 2006 Sep; 128(38):12448-54. PubMed ID: 16984194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111) surface.
    An W; Zeng XC; Turner CH
    J Chem Phys; 2009 Nov; 131(17):174702. PubMed ID: 19895030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111).
    Kokalj A; Bonini N; Sbraccia C; de Gironcoli S; Baroni S
    J Am Chem Soc; 2004 Dec; 126(51):16732-3. PubMed ID: 15612705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane oxidation mechanism on Pt(111): a cluster model DFT study.
    Psofogiannakis G; St-Amant A; Ternan M
    J Phys Chem B; 2006 Dec; 110(48):24593-605. PubMed ID: 17134220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of methane-to-methanol conversion on clean and defective Rh surfaces.
    Fratesi G; de Gironcoli S
    J Chem Phys; 2006 Jul; 125(4):44701. PubMed ID: 16942168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved catalytic activity of rhodium monolayer modified nickel (110) surface for the methane dehydrogenation reaction: a first-principles study.
    Bothra P; Pati SK
    Nanoscale; 2014 Jun; 6(12):6738-44. PubMed ID: 24820886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid three-step cleavage of RNA and DNA model systems promoted by a dinuclear Cu(II) complex in methanol. energetic origins of the catalytic efficacy.
    Lu ZL; Liu CT; Neverov AA; Brown RS
    J Am Chem Soc; 2007 Sep; 129(37):11642-52. PubMed ID: 17715924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane activation on Pt and Pt4: a density functional theory study.
    Xiao L; Wang L
    J Phys Chem B; 2007 Feb; 111(7):1657-63. PubMed ID: 17266353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study of CHx (x=1-3) adsorption on clean and CO precovered Rh(111) surfaces.
    Yang MM; Bao XH; Li WX
    J Chem Phys; 2007 Jul; 127(2):024705. PubMed ID: 17640143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-flip reaction of Re + CH4--a relativistic density functional theory investigation.
    Li J; Chen XY; Qiu YX; Wang SG
    J Phys Chem A; 2009 Jul; 113(30):8471-7. PubMed ID: 19572757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters.
    Rousseau R; Schenter GK; Fulton JL; Linehan JC; Engelhard MH; Autrey T
    J Am Chem Soc; 2009 Aug; 131(30):10516-24. PubMed ID: 19585992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two methanes are better than one: a density functional theory study of the reactions of Mo2Oy- (y = 2-5) with methane.
    Mayhall NJ; Raghavachari K
    J Phys Chem A; 2007 Aug; 111(33):8211-7. PubMed ID: 17665888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density functional theory study of sulfur poisoning.
    McAllister B; Hu P
    J Chem Phys; 2005 Feb; 122(8):84709. PubMed ID: 15836079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.
    Lesnard H; Bocquet ML; Lorente N
    J Am Chem Soc; 2007 Apr; 129(14):4298-305. PubMed ID: 17362003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes.
    Roy AH; Lenges CP; Brookhart M
    J Am Chem Soc; 2007 Feb; 129(7):2082-93. PubMed ID: 17263531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio thermochemistry of the hydrogenation of hydrocarbon radicals using silicon-, germanium-, tin-, and lead-substituted methane and isobutane.
    Temelso B; Sherrill CD; Merkle RC; Freitas RA
    J Phys Chem A; 2007 Sep; 111(35):8677-88. PubMed ID: 17696410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent isotope effects in reactions of human medium-chain acyl-CoA dehydrogenase active site mutants.
    Gradinaru R; Schowen R; Ghisla S
    Biochemistry; 2007 Mar; 46(9):2497-509. PubMed ID: 17286388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT analysis of the reaction paths of formaldehyde decomposition on silver.
    Montoya A; Haynes BS
    J Phys Chem A; 2009 Jul; 113(28):8125-31. PubMed ID: 19586058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.