These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16984394)
1. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. Mann S; Ploux O FEBS J; 2006 Oct; 273(20):4778-89. PubMed ID: 16984394 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of 7,8-diaminopelargonic acid aminotransferase by amiclenomycin and analogues. Mann S; Marquet A; Ploux O Biochem Soc Trans; 2005 Aug; 33(Pt 4):802-5. PubMed ID: 16042602 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of 7,8-diaminopelargonic acid aminotransferase from Mycobacterium tuberculosis by chiral and achiral anologs of its substrate: biological implications. Mann S; Colliandre L; Labesse G; Ploux O Biochimie; 2009 Jul; 91(7):826-34. PubMed ID: 19345718 [TBL] [Abstract][Full Text] [Related]
4. Spectral and kinetic characterization of 7,8-diaminopelargonic acid synthase from Mycobacterium tuberculosis. Bhor VM; Dev S; Vasanthakumar GR; Surolia A IUBMB Life; 2006 Apr; 58(4):225-33. PubMed ID: 16754301 [TBL] [Abstract][Full Text] [Related]
5. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557 [TBL] [Abstract][Full Text] [Related]
6. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction. Van Arsdell SW; Perkins JB; Yocum RR; Luan L; Howitt CL; Chatterjee NP; Pero JG Biotechnol Bioeng; 2005 Jul; 91(1):75-83. PubMed ID: 15880481 [TBL] [Abstract][Full Text] [Related]
7. Structure of biosynthetic N-acetylornithine aminotransferase from Salmonella typhimurium: studies on substrate specificity and inhibitor binding. Rajaram V; Ratna Prasuna P; Savithri HS; Murthy MR Proteins; 2008 Feb; 70(2):429-41. PubMed ID: 17680699 [TBL] [Abstract][Full Text] [Related]
8. Studies of the mode of action of amiclenomycin. Hotta K; Kitahara T; Okami Y J Antibiot (Tokyo); 1975 Mar; 28(3):222-8. PubMed ID: 805119 [TBL] [Abstract][Full Text] [Related]
9. The dual-specific active site of 7,8-diaminopelargonic acid synthase and the effect of the R391A mutation. Eliot AC; Sandmark J; Schneider G; Kirsch JF Biochemistry; 2002 Oct; 41(42):12582-9. PubMed ID: 12379100 [TBL] [Abstract][Full Text] [Related]
10. Characterization of an arginine:pyruvate transaminase in arginine catabolism of Pseudomonas aeruginosa PAO1. Yang Z; Lu CD J Bacteriol; 2007 Jun; 189(11):3954-9. PubMed ID: 17416668 [TBL] [Abstract][Full Text] [Related]
11. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum. Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156 [TBL] [Abstract][Full Text] [Related]
13. Initial velocity, spectral, and pH studies of the serine-glyoxylate aminotransferase from Hyphomicrobiuim methylovorum. Karsten WE; Ohshiro T; Izumi Y; Cook PF Arch Biochem Biophys; 2001 Apr; 388(2):267-75. PubMed ID: 11368164 [TBL] [Abstract][Full Text] [Related]
14. Properties of the 40 kDa antigen of Mycobacterium tuberculosis, a functional L-alanine dehydrogenase. Hutter B; Singh M Biochem J; 1999 Nov; 343 Pt 3(Pt 3):669-72. PubMed ID: 10527947 [TBL] [Abstract][Full Text] [Related]
15. Pyridoxal-5'-phosphate-dependent enzymes involved in biotin biosynthesis: structure, reaction mechanism and inhibition. Mann S; Ploux O Biochim Biophys Acta; 2011 Nov; 1814(11):1459-66. PubMed ID: 21182990 [TBL] [Abstract][Full Text] [Related]
16. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa. Ge L; Seah SY J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659 [TBL] [Abstract][Full Text] [Related]
17. Biological studies of amiclenomycin. Kitahara T; Hotta K; Yoshida M; Okami Y J Antibiot (Tokyo); 1975 Mar; 28(3):215-21. PubMed ID: 805118 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of potential mechanism-based inhibitors of the aminotransferase BioA involved in biotin biosynthesis. Shi C; Aldrich CC J Org Chem; 2012 Jul; 77(14):6051-8. PubMed ID: 22724679 [TBL] [Abstract][Full Text] [Related]
19. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements. Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and functional characterization of triosephosphate isomerase from Mycobacterium tuberculosis H37Rv. Mathur D; Malik G; Garg LC FEMS Microbiol Lett; 2006 Oct; 263(2):229-35. PubMed ID: 16978361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]