These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16984409)

  • 1. Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis.
    Balu B; Adams JH
    Cell Microbiol; 2006 Oct; 8(10):1529-36. PubMed ID: 16984409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac.
    Balu B; Shoue DA; Fraser MJ; Adams JH
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16391-6. PubMed ID: 16260745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome.
    Balu B; Chauhan C; Maher SP; Shoue DA; Kissinger JC; Fraser MJ; Adams JH
    BMC Microbiol; 2009 May; 9():83. PubMed ID: 19422698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the piggyBac transposable system for Plasmodium berghei and its application for random mutagenesis in malaria parasites.
    Fonager J; Franke-Fayard BM; Adams JH; Ramesar J; Klop O; Khan SM; Janse CJ; Waters AP
    BMC Genomics; 2011 Mar; 12():155. PubMed ID: 21418605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements in transfection technologies for Plasmodium.
    Balu B; Adams JH
    Int J Parasitol; 2007 Jan; 37(1):1-10. PubMed ID: 17113093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curation of the Plasmodium falciparum genome.
    Berry AE; Gardner MJ; Caspers GJ; Roos DS; Berriman M
    Trends Parasitol; 2004 Dec; 20(12):548-52. PubMed ID: 15522662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene function prediction using semantic similarity clustering and enrichment analysis in the malaria parasite Plasmodium falciparum.
    Tedder PM; Bradford JR; Needham CJ; McConkey GA; Bulpitt AJ; Westhead DR
    Bioinformatics; 2010 Oct; 26(19):2431-7. PubMed ID: 20693320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of piggyBac-mediated insertions in Plasmodium berghei by next generation sequencing.
    Cao Y; Rui B; Wellems DL; Li M; Chen B; Zhang D; Pan W
    Malar J; 2013 Aug; 12():287. PubMed ID: 23961915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis.
    Sakamoto H; Thiberge S; Akerman S; Janse CJ; Carvalho TG; Ménard R
    Nucleic Acids Res; 2005 Nov; 33(20):e174. PubMed ID: 16284199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum.
    Carucci DJ
    Pharmacogenomics; 2001 May; 2(2):137-42. PubMed ID: 11368752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic Screens Identify Parasite Genetic Factors Associated with Malarial Fever Response in
    Thomas P; Sedillo J; Oberstaller J; Li S; Zhang M; Singh N; Wang CC; Udenze K; Jiang RH; Adams JH
    mSphere; 2016; 1(5):. PubMed ID: 27830190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads.
    Jensen K; Plichta D; Panagiotou G; Kouskoumvekaki I
    Mol Biosyst; 2012 Jun; 8(6):1678-85. PubMed ID: 22446744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome.
    Mu J; Awadalla P; Duan J; McGee KM; Keebler J; Seydel K; McVean GA; Su XZ
    Nat Genet; 2007 Jan; 39(1):126-30. PubMed ID: 17159981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PlasmoDB: exploring genomics and post-genomics data of the malaria parasite, Plasmodium falciparum.
    Fraunholz MJ; Roos DS
    Redox Rep; 2003; 8(5):317-20. PubMed ID: 14962373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis.
    Ikadai H; Shaw Saliba K; Kanzok SM; McLean KJ; Tanaka TQ; Cao J; Williamson KC; Jacobs-Lorena M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):E1676-84. PubMed ID: 23572579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional genomics, new tools in malaria research.
    Di Girolamo F; Raggi C; Bultrini E; Lanfrancotti A; Silvestrini F; Sargiacomo M; Birago C; Pizzi E; Alano P; Ponzi M
    Ann Ist Super Sanita; 2005; 41(4):469-77. PubMed ID: 16569915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmodium, human and Anopheles genomics and malaria.
    Hoffman SL; Subramanian GM; Collins FH; Venter JC
    Nature; 2002 Feb; 415(6872):702-9. PubMed ID: 11832959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication.
    Le Roch KG; Chung DW; Ponts N
    Parasite Immunol; 2012; 34(2-3):50-60. PubMed ID: 21995286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.
    Grabundzija I; Izsvák Z; Ivics Z
    Methods Mol Biol; 2011; 738():69-85. PubMed ID: 21431720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional mutagenesis of the mouse germline with Sleeping Beauty transposition.
    Takeda J; Izsvák Z; Ivics Z
    Methods Mol Biol; 2008; 435():109-25. PubMed ID: 18370071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.