These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16984409)

  • 41. Entering the post-genomic era of malaria research.
    Horrocks P; Bowman S; Kyes S; Waters AP; Craig A
    Bull World Health Organ; 2000; 78(12):1424-37. PubMed ID: 11196489
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Progress in in silico functional genomics: the malaria Metabolic Pathways database.
    Ginsburg H
    Trends Parasitol; 2006 Jun; 22(6):238-40. PubMed ID: 16707276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon.
    Crabb BS; de Koning-Ward TF; Gilson PR
    BMC Biol; 2011 Mar; 9():21. PubMed ID: 21453557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice.
    Ding S; Wu X; Li G; Han M; Zhuang Y; Xu T
    Cell; 2005 Aug; 122(3):473-83. PubMed ID: 16096065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.
    Durand PM; Oelofse AJ; Coetzer TL
    BMC Genomics; 2006 Nov; 7():282. PubMed ID: 17083741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum.
    Webster WA; McFadden GI
    J Eukaryot Microbiol; 2014; 61(6):655-71. PubMed ID: 25227912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans.
    Evangelinos M; Anagnostopoulos G; Karvela-Kalogeraki I; Stathopoulou PM; Scazzocchio C; Diallinas G
    Fungal Genet Biol; 2015 Aug; 81():1-11. PubMed ID: 26021704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling.
    Beverley SM; Akopyants NS; Goyard S; Matlib RS; Gordon JL; Brownstein BH; Stormo GD; Bukanova EN; Hott CT; Li F; MacMillan S; Muo JN; Schwertman LA; Smeds MR; Wang Y
    Philos Trans R Soc Lond B Biol Sci; 2002 Jan; 357(1417):47-53. PubMed ID: 11839181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. piggyBac transposon-based insertional mutagenesis for the fission yeast Schizosaccharomyces pombe.
    Li J; Du LL
    Methods Mol Biol; 2014; 1163():213-22. PubMed ID: 24841310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Malaria in the 'Omics Era'.
    Pegoraro M; Weedall GD
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum.
    Martin RE; Henry RI; Abbey JL; Clements JD; Kirk K
    Genome Biol; 2005; 6(3):R26. PubMed ID: 15774027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in molecular genetic systems in malaria.
    de Koning-Ward TF; Gilson PR; Crabb BS
    Nat Rev Microbiol; 2015 Jun; 13(6):373-87. PubMed ID: 25978707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A whole lotta jumpin' goin' on: new transposon tools for vertebrate functional genomics.
    Ivics Z; Izsvák Z
    Trends Genet; 2005 Jan; 21(1):8-11. PubMed ID: 15680506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome.
    Huckaby AC; Granum CS; Carey MA; Szlachta K; Al-Barghouthi B; Wang YH; Guler JL
    Nucleic Acids Res; 2019 Feb; 47(4):1615-1627. PubMed ID: 30576466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum.
    Mamoun CB; Gluzman IY; Goyard S; Beverley SM; Goldberg DE
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8716-20. PubMed ID: 10411941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PiggyBac transposon-mediated mutagenesis and application in yeast Komagataella phaffii.
    Zhu J; Zhu Q; Gong R; Xu Q; Cai M; Jiang T; Zhou X; Zhou M; Zhang Y
    Biotechnol Lett; 2018 Oct; 40(9-10):1365-1376. PubMed ID: 30003383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide piggyBac transposon-based mutagenesis and quantitative insertion-site analysis in haploid Candida species.
    Li Z; Wang H; Cai C; Wong AH; Wang J; Gao J; Wang Y
    Nat Protoc; 2020 Aug; 15(8):2705-2727. PubMed ID: 32681154
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans.
    Bazopoulou D; Tavernarakis N
    Genetica; 2009 Sep; 137(1):39-46. PubMed ID: 19343510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome sequencing. Closing in on a deadly parasite's genome.
    Pennisi E
    Science; 2000 Oct; 290(5491):439. PubMed ID: 11183759
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies.
    Hubbard TP; D'Gama JD; Billings G; Davis BM; Waldor MK
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.