BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16984889)

  • 1. Synthesis and testing of a focused phenothiazine library for binding to HIV-1 TAR RNA.
    Mayer M; Lang PT; Gerber S; Madrid PB; Pinto IG; Guy RK; James TL
    Chem Biol; 2006 Sep; 13(9):993-1000. PubMed ID: 16984889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR-based characterization of phenothiazines as a RNA binding scaffold.
    Mayer M; James TL
    J Am Chem Soc; 2004 Apr; 126(13):4453-60. PubMed ID: 15053636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of a dinuclear ruthenium(ii) complex to the TAR region of the HIV-AIDS viral RNA.
    Buck DP; Spillane CB; Collins JG; Keene FR
    Mol Biosyst; 2008 Aug; 4(8):851-4. PubMed ID: 18633486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
    Dayie KT; Brodsky AS; Williamson JR
    J Mol Biol; 2002 Mar; 317(2):263-78. PubMed ID: 11902842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic PNA-based compound directed against HIV-1 TAR RNA: modelling, liquid-phase synthesis and TAR binding.
    Depecker G; Patino N; Di Giorgio C; Terreux R; Cabrol-Bass D; Bailly C; Aubertin AM; Condom R
    Org Biomol Chem; 2004 Jan; 2(1):74-9. PubMed ID: 14737662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationships for inhibition of human cholinesterases by alkyl amide phenothiazine derivatives.
    Darvesh S; McDonald RS; Penwell A; Conrad S; Darvesh KV; Mataija D; Gomez G; Caines A; Walsh R; Martin E
    Bioorg Med Chem; 2005 Jan; 13(1):211-22. PubMed ID: 15582466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries.
    Ferner J; Suhartono M; Breitung S; Jonker HR; Hennig M; Wöhnert J; Göbel M; Schwalbe H
    Chembiochem; 2009 Jun; 10(9):1490-4. PubMed ID: 19444830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships of aminoglycoside-arginine conjugates that bind HIV-1 RNAs as determined by fluorescence and NMR spectroscopy.
    Lapidot A; Vijayabaskar V; Litovchick A; Yu J; James TL
    FEBS Lett; 2004 Nov; 577(3):415-21. PubMed ID: 15556620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleobase modified neamines, their synthesis and binding specificity for HIV TAR RNA.
    Watanabe K; Katou T; Ikezawa Y; Yajima S; Shionoya H; Akagi T; Hamasaki K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):209-10. PubMed ID: 18029660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirocyclic helical compounds as binding agents for bulged RNA, including HIV-2 TAR.
    Xiao Z; Zhang N; Lin Y; Jones GB; Goldberg IH
    Chem Commun (Camb); 2006 Nov; (42):4431-3. PubMed ID: 17057867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tripeptides from synthetic amino acids block the Tat-TAR association and slow down HIV spread in cell cultures.
    Ludwig V; Krebs A; Stoll M; Dietrich U; Ferner J; Schwalbe H; Scheffer U; Dürner G; Göbel MW
    Chembiochem; 2007 Oct; 8(15):1850-6. PubMed ID: 17886825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1.
    Watrin M; Von Pelchrzim F; Dausse E; Schroeder R; Toulmé JJ
    Biochemistry; 2009 Jul; 48(26):6278-84. PubMed ID: 19496624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LNA derivatives of a kissing aptamer targeted to the trans-activating responsive RNA element of HIV-1.
    Lebars I; Richard T; Di Primo C; Toulmé JJ
    Blood Cells Mol Dis; 2007; 38(3):204-9. PubMed ID: 17300966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg2+-induced variations in the conformation and dynamics of HIV-1 TAR RNA probed using NMR residual dipolar couplings.
    Al-Hashimi HM; Pitt SW; Majumdar A; Xu W; Patel DJ
    J Mol Biol; 2003 Jun; 329(5):867-73. PubMed ID: 12798678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of a branched peptide library with HIV-1 TAR RNA.
    Bryson DI; Zhang W; Ray WK; Santos WL
    Mol Biosyst; 2009 Sep; 5(9):1070-3. PubMed ID: 19668873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Phenylquinolones as inhibitors of the HIV-1 Tat-TAR interaction.
    Gatto B; Tabarrini O; Massari S; Giaretta G; Sabatini S; Del Vecchio C; Parolin C; Fravolini A; Palumbo M; Cecchetti V
    ChemMedChem; 2009 Jun; 4(6):935-8. PubMed ID: 19283692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat-TAR interaction inhibitors.
    Chen S; Chen R; He M; Pang R; Tan Z; Yang M
    Bioorg Med Chem; 2009 Mar; 17(5):1948-56. PubMed ID: 19217787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 5-fluoropyrimidine nucleotides as sensitive NMR probes of RNA structure.
    Hennig M; Scott LG; Sperling E; Bermel W; Williamson JR
    J Am Chem Soc; 2007 Dec; 129(48):14911-21. PubMed ID: 17990877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase synthesis and evaluation of TAR RNA targeted beta-carboline-nucleoside conjugates.
    Zhao P; Jin HW; Yang ZJ; Zhang LR; Zhang LH
    Org Biomol Chem; 2008 Oct; 6(20):3741-50. PubMed ID: 18843404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the motional modes that code for RNA adaptation.
    Zhang Q; Sun X; Watt ED; Al-Hashimi HM
    Science; 2006 Feb; 311(5761):653-6. PubMed ID: 16456078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.