These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16984914)

  • 1. Phospholipid dependence and liposome reconstitution of purified hyaluronan synthase.
    Weigel PH; Kyossev Z; Torres LC
    J Biol Chem; 2006 Dec; 281(48):36542-51. PubMed ID: 16984914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronan synthase mediates dye translocation across liposomal membranes.
    Medina AP; Lin J; Weigel PH
    BMC Biochem; 2012 Jan; 13():2. PubMed ID: 22276637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis.
    Tlapak-Simmons VL; Baggenstoss BA; Clyne T; Weigel PH
    J Biol Chem; 1999 Feb; 274(7):4239-45. PubMed ID: 9933623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis.
    Tlapak-Simmons VL; Baggenstoss BA; Kumari K; Heldermon C; Weigel PH
    J Biol Chem; 1999 Feb; 274(7):4246-53. PubMed ID: 9933624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The streptococcal hyaluronan synthases are inhibited by sulfhydryl-modifying reagents, but conserved cysteine residues are not essential for enzyme function.
    Kumari K; Tlapak-Simmons VL; Baggenstoss BA; Weigel PH
    J Biol Chem; 2002 Apr; 277(16):13943-51. PubMed ID: 11799120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis.
    Tlapak-Simmons VL; Baron CA; Weigel PH
    Biochemistry; 2004 Jul; 43(28):9234-42. PubMed ID: 15248781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis.
    Kumari K; Weigel PH
    J Biol Chem; 1997 Dec; 272(51):32539-46. PubMed ID: 9405467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules.
    Tlapak-Simmons VL; Kempner ES; Baggenstoss BA; Weigel PH
    J Biol Chem; 1998 Oct; 273(40):26100-9. PubMed ID: 9748290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex.
    Abe M; Niibayashi R; Koubori S; Moriyama I; Miyoshi H
    Biochemistry; 2011 Oct; 50(39):8383-91. PubMed ID: 21877718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers.
    Yang J; Cheng F; Yu H; Wang J; Guo Z; Stephanopoulos G
    Biomacromolecules; 2017 Apr; 18(4):1064-1073. PubMed ID: 28192668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes).
    Rogerson ML; Robinson BH; Bucak S; Walde P
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):24-34. PubMed ID: 16466910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt and nickel affect the fluidity of negatively-charged biomimetic membranes.
    Umbsaar J; Kerek E; Prenner EJ
    Chem Phys Lipids; 2018 Jan; 210():28-37. PubMed ID: 29247611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 IIIA1 (P450p) requires cytochrome b5 and phospholipid with unsaturated fatty acids.
    Eberhart DC; Parkinson A
    Arch Biochem Biophys; 1991 Dec; 291(2):231-40. PubMed ID: 1659320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cytochrome c affinity to anionic phospholipids by means of surface plasmon resonance.
    Stepanov G; Gnedenko O; Mol'nar A; Ivanov A; Vladimirov Y; Osipov A
    FEBS Lett; 2009 Jan; 583(1):97-100. PubMed ID: 19059242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions.
    Rytömaa M; Kinnunen PK
    J Biol Chem; 1995 Feb; 270(7):3197-202. PubMed ID: 7852404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size.
    Kumari K; Baggenstoss BA; Parker AL; Weigel PH
    J Biol Chem; 2006 Apr; 281(17):11755-60. PubMed ID: 16505475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the interaction of pig muscle lactate dehydrogenase with acidic phospholipids at low pH.
    Terlecki G; Czapiñska E; Rogozik K; Lisowski M; Gutowicz J
    Biochim Biophys Acta; 2006 Feb; 1758(2):133-44. PubMed ID: 16650378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between the activity of glucosylceramidase and its binding to glucosylceramide-containing liposomes. Role of acidic phospholipids and fatty acids.
    Vaccaro AM; Tatti M; Salvioli R; Ciaffoni F; Gallozzi E
    Biochim Biophys Acta; 1990 Jan; 1033(1):73-9. PubMed ID: 2302413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.