These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16985238)

  • 41. Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells.
    Xu X; Brzostowski JA; Jin T
    Methods Mol Biol; 2006; 346():281-96. PubMed ID: 16957297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range.
    Klarenbeek JB; Goedhart J; Hink MA; Gadella TW; Jalink K
    PLoS One; 2011 Apr; 6(4):e19170. PubMed ID: 21559477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes.
    Götz KR; Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Kuhn M; Gorelik J; Balligand JL; Nikolaev VO
    Circ Res; 2014 Apr; 114(8):1235-45. PubMed ID: 24599804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.
    Romero F; Santana-Calvo C; Sánchez-Guevara Y; Nishigaki T
    FEBS Lett; 2017 Sep; 591(18):2869-2878. PubMed ID: 28734016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin.
    Dal Molin F; Zornetta I; Puhar A; Tonello F; Zaccolo M; Montecucco C
    Biochem Biophys Res Commun; 2008 Nov; 376(2):429-33. PubMed ID: 18793614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease.
    Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Maier LS; Hasenfuss G; Nikolaev VO
    Nat Commun; 2015 Apr; 6():6965. PubMed ID: 25917898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Imaging signal transduction in living cells with GFP-based probes.
    Zaccolo M; Pozzan T
    IUBMB Life; 2000 May; 49(5):375-9. PubMed ID: 10902568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-time and high throughput monitoring of cAMP in live cells using a fluorescent membrane potential-sensitive dye.
    Tang Y; Li X; He J; Lu J; Diwu Z
    Assay Drug Dev Technol; 2006 Aug; 4(4):461-71. PubMed ID: 16945018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of free cytosolic calcium in single cells: method and application.
    Raue F; Zink A
    Methods Find Exp Clin Pharmacol; 1992 May; 14(4):327-32. PubMed ID: 1354776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time monitoring of phosphodiesterase inhibition in intact cells.
    Herget S; Lohse MJ; Nikolaev VO
    Cell Signal; 2008 Aug; 20(8):1423-31. PubMed ID: 18467075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous quantitative live cell imaging of multiple FRET-based biosensors.
    Woehler A
    PLoS One; 2013; 8(4):e61096. PubMed ID: 23613792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells.
    Monck JR; Oberhauser AF; Keating TJ; Fernandez JM
    J Cell Biol; 1992 Feb; 116(3):745-59. PubMed ID: 1730775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsulfoxide-differentiated HL-60 cells to modulated low frequency electric currents.
    Sontag W; Dertinger H
    Bioelectromagnetics; 1998; 19(8):452-8. PubMed ID: 9849914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time monitoring of somatostatin receptor-cAMP signaling in live pituitary.
    Jacobs S; Calebiro D; Nikolaev VO; Lohse MJ; Schulz S
    Endocrinology; 2010 Sep; 151(9):4560-5. PubMed ID: 20610560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generation of transgenic mice expressing FRET biosensors.
    Hübscher D; Nikolaev VO
    Methods Mol Biol; 2015; 1294():117-29. PubMed ID: 25783881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers.
    Kayser C; Lohse MJ; Bock A
    Methods Mol Biol; 2022; 2483():1-13. PubMed ID: 35286666
    [TBL] [Abstract][Full Text] [Related]  

  • 57. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins.
    Kim N; Shin S; Bae SW
    Biosensors (Basel); 2021 Jan; 11(2):. PubMed ID: 33572585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging.
    Sauer B; Tian Q; Lipp P; Kaestner L
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1328-32. PubMed ID: 25447281
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel biosensor to study cAMP dynamics in cilia and flagella.
    Mukherjee S; Jansen V; Jikeli JF; Hamzeh H; Alvarez L; Dombrowski M; Balbach M; Strünker T; Seifert R; Kaupp UB; Wachten D
    Elife; 2016 Mar; 5():. PubMed ID: 27003291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.