BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16985287)

  • 21. Quantitative rotating multisegment slant-hole SPECT mammography with attenuation and collimator-detector response compensation.
    Xu J; Liu C; Wang Y; Frey EC; Tsui BM
    IEEE Trans Med Imaging; 2007 Jul; 26(7):906-16. PubMed ID: 17649904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging characteristics of a 3-dimensional GSO whole-body PET camera.
    Surti S; Karp JS
    J Nucl Med; 2004 Jun; 45(6):1040-9. PubMed ID: 15181139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling.
    Huesman RH; Klein GJ; Moses WW; Qi J; Reutter BW; Virador PR
    IEEE Trans Med Imaging; 2000 May; 19(5):532-7. PubMed ID: 11021696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerated 3D-OSEM image reconstruction using a Beowulf PC cluster for pinhole SPECT.
    Zeniya T; Watabe H; Sohlberg A; Iida H
    Ann Nucl Med; 2007 Nov; 21(9):537-43. PubMed ID: 18030588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time 3D surface-image-guided beam setup in radiotherapy of breast cancer.
    Djajaputra D; Li S
    Med Phys; 2005 Jan; 32(1):65-75. PubMed ID: 15719956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compression paddle tilt correction in full-field digital mammograms.
    Kallenberg MG; Karssemeijer N
    Phys Med Biol; 2012 Feb; 57(3):703-15. PubMed ID: 22241616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential role of positron emission mammography for detection of breast cancer. A phantom study.
    Raylman RR; Majewski S; Wojcik R; Weisenberger AG; Kross B; Popov V; Bishop HA
    Med Phys; 2000 Aug; 27(8):1943-54. PubMed ID: 10984240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A preliminary study on computerized lesion localization in MR mammography using 3D nMITR maps, multilayer cellular neural networks, and fuzzy c-partitioning.
    Ertas G; Gulcur HO; Tunaci M; Osman O; Ucan ON
    Med Phys; 2008 Jan; 35(1):195-205. PubMed ID: 18293575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera.
    Roberts J; Maddula R; Clackdoyle R; DiBella E; Fu Z
    Phys Med Biol; 2007 Aug; 52(15):4525-40. PubMed ID: 17634648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.
    Kiarashi N; Nolte AC; Sturgeon GM; Segars WP; Ghate SV; Nolte LW; Samei E; Lo JY
    Med Phys; 2015 Jul; 42(7):4116-26. PubMed ID: 26133612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography.
    Tanner C; Schnabel JA; Hill DL; Hawkes DJ; Degenhard A; Leach MO; Hose DR; Hall-Craggs MA; Usiskin SI
    Med Phys; 2007 Apr; 34(4):1221-33. PubMed ID: 17500454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of spherical lesions in tumor-mimicking phantoms by 3D sparse array photoacoustic imaging.
    Ephrat P; Albert GC; Roumeliotis MB; Belton M; Prato FS; Carson JJ
    Med Phys; 2010 Apr; 37(4):1619-28. PubMed ID: 20443483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized density-weighted imaging for dynamic contrast-enhanced 3D-MR mammography.
    Gutberlet M; Roth A; Hahn D; Köstler H
    J Magn Reson Imaging; 2011 Feb; 33(2):328-39. PubMed ID: 21274974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dedicated breast computed tomography: Basic aspects.
    Sarno A; Mettivier G; Russo P
    Med Phys; 2015 Jun; 42(6):2786-804. PubMed ID: 26127031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation and CT sampling characterization of a third-generation SPECT-CT system for dedicated breast imaging.
    Shah JP; Mann SD; McKinley RL; Tornai MP
    J Med Imaging (Bellingham); 2017 Jul; 4(3):033502. PubMed ID: 28924570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ROC analysis for assessment of lesion detection performance in 3D PET: influence of reconstruction algorithms.
    Glatting G; Werner C; Reske SN; Bellemann ME
    Med Phys; 2003 Sep; 30(9):2315-9. PubMed ID: 14528952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of point-by-point back projection correction for isocentric motion in digital breast tomosynthesis: relevance to morphology of structures such as microcalcifications.
    Chen Y; Lo JY; Dobbins JT
    Med Phys; 2007 Oct; 34(10):3885-92. PubMed ID: 17985634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.