These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16985533)

  • 1. Reduced-complexity representation of the coherent point-spread function in the presence of aberrations and arbitrarily large defocus.
    Bagheri S; de Farias DP; Barbastathis G; Neifeld MA
    J Opt Soc Am A Opt Image Sci Vis; 2006 Oct; 23(10):2476-93. PubMed ID: 16985533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):849-57. PubMed ID: 11999961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions.
    Braat J; Dirksen P; Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):858-70. PubMed ID: 11999962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.
    Sheppard CJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2150-61. PubMed ID: 24322870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defocus sensitivity optimization using the defocus Taylor expansion of the optical transfer function.
    Barwick S
    Appl Opt; 2008 Nov; 47(31):5893-902. PubMed ID: 19122731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monochromatic aberrations provide an odd-error cue to focus direction.
    Wilson BJ; Decker KE; Roorda A
    J Opt Soc Am A Opt Image Sci Vis; 2002 May; 19(5):833-9. PubMed ID: 11999959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monochromatic aberrations and point-spread functions of the human eye across the visual field.
    Navarro R; Moreno E; Dorronsoro C
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2522-9. PubMed ID: 9729864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic synthesis of arbitrary surfaces with vortex Jinc functions.
    Gómez-Correa JE; Platas-Garza MA; Trevino JP; Jaimes-Nájera A; Padilla-Ortiz AL; Galaviz-Mosqueda A; Coello V; Rogel-Salazar J; Chávez-Cerda S
    Appl Opt; 2020 May; 59(13):D95-D103. PubMed ID: 32400633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved wavefront correction for coherent image restoration.
    Zelenka C; Koch R
    Opt Express; 2017 Aug; 25(16):18797-18816. PubMed ID: 29041073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient source mask optimization with Zernike polynomial functions for source representation.
    Wu X; Liu S; Li J; Lam EY
    Opt Express; 2014 Feb; 22(4):3924-37. PubMed ID: 24663713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography.
    Marian A; Charrière F; Colomb T; Montfort F; Kühn J; Marquet P; Depeursinge C
    J Microsc; 2007 Feb; 225(Pt 2):156-69. PubMed ID: 17359250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating spatially varying defocus blur from a single image.
    Zhu X; Cohen S; Schiller S; Milanfar P
    IEEE Trans Image Process; 2013 Dec; 22(12):4879-91. PubMed ID: 23974627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of diffraction effects in spatial frequency-modulated imaging.
    Higley DJ; Winters DG; Futia GL; Bartels RA
    J Opt Soc Am A Opt Image Sci Vis; 2012 Dec; 29(12):2579-90. PubMed ID: 23455907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and efficient inverse mask synthesis with basis function representation.
    Wu X; Liu S; Lv W; Lam EY
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):B1-9. PubMed ID: 25606774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the effects of optical defocus on human contrast sensitivity.
    Atchison DA; Woods RL; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2536-44. PubMed ID: 9729866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left-handed metamaterial coatings for subwavelength-resolution imaging.
    Zapata-Rodríguez CJ; Pastor D; Martínez LE; Miret JJ
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1992-8. PubMed ID: 23201957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.