These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16986193)

  • 21. Collective motions in glucosamine-6-phosphate synthase: influence of ligand binding and role in ammonia channelling and opening of the fructose-6-phosphate binding site.
    Floquet N; Durand P; Maigret B; Badet B; Badet-Denisot MA; Perahia D
    J Mol Biol; 2009 Jan; 385(2):653-64. PubMed ID: 18976669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics.
    Banás P; Walter NG; Sponer J; Otyepka M
    J Phys Chem B; 2010 Jul; 114(26):8701-12. PubMed ID: 20536206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structural and functional uniqueness of the glmS ribozyme.
    Soukup JK
    Prog Mol Biol Transl Sci; 2013; 120():173-93. PubMed ID: 24156944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tale in molecular recognition: the hammerhead ribozyme.
    Westhof E
    J Mol Recognit; 2007; 20(1):1-3. PubMed ID: 17089350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel.
    Mouilleron S; Badet-Denisot MA; Golinelli-Pimpaneau B
    J Mol Biol; 2008 Apr; 377(4):1174-85. PubMed ID: 18295797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules.
    Ferré-D'Amaré AR
    Philos Trans R Soc Lond B Biol Sci; 2011 Oct; 366(1580):2942-8. PubMed ID: 21930586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of the glmS Ribozyme Nucleophile via Overdetermined Hydrogen Bonding.
    Bingaman JL; Gonzalez IY; Wang B; Bevilacqua PC
    Biochemistry; 2017 Aug; 56(33):4313-4317. PubMed ID: 28787138
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-cleavage of the
    Savinov A; Block SM
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):11976-11981. PubMed ID: 30397151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemistry. Toward understanding self-splicing.
    Piccirilli JA
    Science; 2008 Apr; 320(5872):56-7. PubMed ID: 18388278
    [No Abstract]   [Full Text] [Related]  

  • 30. Impact of an extruded nucleotide on cleavage activity and dynamic catalytic core conformation of the hepatitis delta virus ribozyme.
    Sefcikova J; Krasovska MV; Spacková N; Sponer J; Walter NG
    Biopolymers; 2007 Apr 5-15; 85(5-6):392-406. PubMed ID: 17253610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme.
    Cochrane JC; Lipchock SV; Smith KD; Strobel SA
    Biochemistry; 2009 Apr; 48(15):3239-46. PubMed ID: 19228039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing general base catalysis in the hammerhead ribozyme.
    Thomas JM; Perrin DM
    J Am Chem Soc; 2008 Nov; 130(46):15467-75. PubMed ID: 18950173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The hammerhead ribozyme structure brought in line.
    Przybilski R; Hammann C
    Chembiochem; 2006 Nov; 7(11):1641-4. PubMed ID: 16991176
    [No Abstract]   [Full Text] [Related]  

  • 34. A ligase ribozyme obtained from a structured pool.
    Yoshioka W; Ikawa Y; Jaeger L; Inoue T
    Nucleic Acids Symp Ser (Oxf); 2004; (48):209-10. PubMed ID: 17150552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovering new inhibitors of bacterial glucosamine-6P synthase (GlmS) by docking simulations.
    Floquet N; Richez C; Durand P; Maigret B; Badet B; Badet-Denisot MA
    Bioorg Med Chem Lett; 2007 Apr; 17(7):1966-70. PubMed ID: 17291748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved aptazyme design and in vivo screening enable riboswitching in bacteria.
    Wieland M; Hartig JS
    Angew Chem Int Ed Engl; 2008; 47(14):2604-7. PubMed ID: 18270990
    [No Abstract]   [Full Text] [Related]  

  • 37. Photochemical hammerhead ribozyme activation.
    Young DD; Deiters A
    Bioorg Med Chem Lett; 2006 May; 16(10):2658-61. PubMed ID: 16513347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An expanded collection and refined consensus model of glmS ribozymes.
    McCown PJ; Roth A; Breaker RR
    RNA; 2011 Apr; 17(4):728-36. PubMed ID: 21367971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small-molecule-dependent regulation of transfer RNA in bacteria.
    Berschneider B; Wieland M; Rubini M; Hartig JS
    Angew Chem Int Ed Engl; 2009; 48(41):7564-7. PubMed ID: 19739151
    [No Abstract]   [Full Text] [Related]  

  • 40. In vitro selection of a 5'-purine nucleotide transferase ribozyme.
    Kang TJ; Suga H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):379-80. PubMed ID: 18029745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.