These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Cawley GC; Talbot NL Bioinformatics; 2006 Oct; 22(19):2348-55. PubMed ID: 16844704 [TBL] [Abstract][Full Text] [Related]
4. Cancer classification and prediction using logistic regression with Bayesian gene selection. Zhou X; Liu KY; Wong ST J Biomed Inform; 2004 Aug; 37(4):249-59. PubMed ID: 15465478 [TBL] [Abstract][Full Text] [Related]
5. Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Yeung KY; Bumgarner RE; Raftery AE Bioinformatics; 2005 May; 21(10):2394-402. PubMed ID: 15713736 [TBL] [Abstract][Full Text] [Related]
6. Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis. Lu C; Devos A; Suykens JA; ArĂºs C; Van Huffel S IEEE Trans Inf Technol Biomed; 2007 May; 11(3):338-47. PubMed ID: 17521084 [TBL] [Abstract][Full Text] [Related]
7. Dimension reduction-based penalized logistic regression for cancer classification using microarray data. Shen L; Tan EC IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):166-75. PubMed ID: 17044181 [TBL] [Abstract][Full Text] [Related]
8. Robust and accurate cancer classification with gene expression profiling. Li H; Zhang K; Jiang T Proc IEEE Comput Syst Bioinform Conf; 2005; ():310-21. PubMed ID: 16447988 [TBL] [Abstract][Full Text] [Related]
9. A robust meta-classification strategy for cancer diagnosis from gene expression data. Alexe G; Bhanot G; Venkataraghavan B; Ramaswamy R; Lepre J; Levine AJ; Stolovitzky G Proc IEEE Comput Syst Bioinform Conf; 2005; ():322-5. PubMed ID: 16447989 [TBL] [Abstract][Full Text] [Related]
10. Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Liao JG; Chin KV Bioinformatics; 2007 Aug; 23(15):1945-51. PubMed ID: 17540680 [TBL] [Abstract][Full Text] [Related]
11. Regularized binormal ROC method in disease classification using microarray data. Ma S; Song X; Huang J BMC Bioinformatics; 2006 May; 7():253. PubMed ID: 16684357 [TBL] [Abstract][Full Text] [Related]
12. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering. Pal NR; Aguan K; Sharma A; Amari S BMC Bioinformatics; 2007 Jan; 8():5. PubMed ID: 17207284 [TBL] [Abstract][Full Text] [Related]
13. Multiclass molecular cancer classification by kernel subspace methods with effective kernel parameter selection. Niijima S; Kuhara S J Bioinform Comput Biol; 2005 Oct; 3(5):1071-88. PubMed ID: 16278948 [TBL] [Abstract][Full Text] [Related]
14. Classification of proteomic data with multiclass Logistic Partial Least Squares algorithm. Liu Z; Chen D; Tian JP Int J Bioinform Res Appl; 2008; 4(1):1-10. PubMed ID: 18283025 [TBL] [Abstract][Full Text] [Related]
15. Using fuzzy association rule mining in cancer classification. Mahmoodian H; Hamiruce Marhaban M; Abdulrahim R; Rosli R; Saripan I Australas Phys Eng Sci Med; 2011 Apr; 34(1):41-54. PubMed ID: 21327594 [TBL] [Abstract][Full Text] [Related]
16. Eigengene-based linear discriminant model for tumor classification using gene expression microarray data. Shen R; Ghosh D; Chinnaiyan A; Meng Z Bioinformatics; 2006 Nov; 22(21):2635-42. PubMed ID: 16926220 [TBL] [Abstract][Full Text] [Related]
17. Gene selection for microarray gene expression classification using Bayesian Lasso quantile regression. Algamal ZY; Alhamzawi R; Mohammad Ali HT Comput Biol Med; 2018 Jun; 97():145-152. PubMed ID: 29729489 [TBL] [Abstract][Full Text] [Related]
18. Toward a measure of classification complexity in gene expression signatures. Kamath V; Yeatman TJ; Eschrich SA Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5704-7. PubMed ID: 19164012 [TBL] [Abstract][Full Text] [Related]
19. An integrated feature selection and classification method to select minimum number of variables on the case study of gene expression data. Goh L; Kasabov N J Bioinform Comput Biol; 2005 Oct; 3(5):1107-36. PubMed ID: 16278950 [TBL] [Abstract][Full Text] [Related]
20. A classification framework applied to cancer gene expression profiles. Hijazi H; Chan C J Healthc Eng; 2013; 4(2):255-83. PubMed ID: 23778014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]