BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16986265)

  • 1. Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module.
    Maurya MR; Bornheimer SJ; Venkatasubramanian V; Subramaniam S
    Syst Biol (Stevenage); 2005 Dec; 152(4):229-42. PubMed ID: 16986265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks.
    Maurya MR; Bornheimer SJ; Venkatasubramanian V; Subramaniam S
    IET Syst Biol; 2009 Jan; 3(1):24-39. PubMed ID: 19154082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction.
    Bornheimer SJ; Maurya MR; Farquhar MG; Subramaniam S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15899-904. PubMed ID: 15520372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized concept of minimal cut sets in biochemical networks.
    Klamt S
    Biosystems; 2006; 83(2-3):233-47. PubMed ID: 16303240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid approach for efficient and robust parameter estimation in biochemical pathways.
    Rodriguez-Fernandez M; Mendes P; Banga JR
    Biosystems; 2006; 83(2-3):248-65. PubMed ID: 16236429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with PORGY.
    Andrei O; Fernández M; Kirchner H; Pinaud B
    Methods Mol Biol; 2019; 1945():43-70. PubMed ID: 30945242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model explains high activity and rapid cycling of Rho GTPases within protein complexes.
    Goryachev AB; Pokhilko AV
    PLoS Comput Biol; 2006 Dec; 2(12):e172. PubMed ID: 17140284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha).
    Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH
    Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithmic approaches for computing elementary modes in large biochemical reaction networks.
    Klamt S; Gagneur J; von Kamp A
    Syst Biol (Stevenage); 2005 Dec; 152(4):249-55. PubMed ID: 16986267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator.
    Berstein G; Blank JL; Jhon DY; Exton JH; Rhee SG; Ross EM
    Cell; 1992 Aug; 70(3):411-8. PubMed ID: 1322796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico evolution of functional modules in biochemical networks.
    Paladugu SR; Chickarmane V; Deckard A; Frumkin JP; McCormack M; Sauro HM
    Syst Biol (Stevenage); 2006 Jul; 153(4):223-35. PubMed ID: 16986624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methodologies for modelling, analysis and simulation of signalling networks.
    Gilbert D; Fuss H; Gu X; Orton R; Robinson S; Vyshemirsky V; Kurth MJ; Downes CS; Dubitzky W
    Brief Bioinform; 2006 Dec; 7(4):339-53. PubMed ID: 17116646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex networks and simple models in biology.
    de Silva E; Stumpf MP
    J R Soc Interface; 2005 Dec; 2(5):419-30. PubMed ID: 16849202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new measure of the robustness of biochemical networks.
    Chen BS; Wang YC; Wu WS; Li WH
    Bioinformatics; 2005 Jun; 21(11):2698-705. PubMed ID: 15731208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for inverse bifurcation of biochemical switches: inferring parameters from dose response curves.
    Otero-Muras I; Yordanov P; Stelling J
    BMC Syst Biol; 2014 Nov; 8():114. PubMed ID: 25409687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEBINI: Software Environment for BIological Network Inference.
    Taylor RC; Shah A; Treatman C; Blevins M
    Bioinformatics; 2006 Nov; 22(21):2706-8. PubMed ID: 16954144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.
    Breitling R; Gilbert D; Heiner M; Orton R
    Brief Bioinform; 2008 Sep; 9(5):404-21. PubMed ID: 18573813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communicating oscillatory networks: frequency domain analysis.
    Ihekwaba AE; Sedwards S
    BMC Syst Biol; 2011 Dec; 5():203. PubMed ID: 22192879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical networks with uncertain parameters.
    Liebermeister W; Klipp E
    Syst Biol (Stevenage); 2005 Sep; 152(3):97-107. PubMed ID: 16986274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoeostasis between the GTPase Spg1p and its GAP in the regulation of cytokinesis in S. pombe.
    Krapp A; Collin P; Cano Del Rosario E; Simanis V
    J Cell Sci; 2008 Mar; 121(Pt 5):601-8. PubMed ID: 18252797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.