These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16986325)

  • 1. Brownian dynamic model of the glycine receptor chloride channel: effect of the position of charged amino acids on ion membrane currents.
    Boronovsky SE; Seraya IP; Nartsissov YR
    Syst Biol (Stevenage); 2006 Sep; 153(5):394-7. PubMed ID: 16986325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].
    Boronovskiĭ SE; Nartsissov IaR
    Biofizika; 2009; 54(3):448-53. PubMed ID: 19569504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conduction mechanisms of chloride ions in ClC-type channels.
    Corry B; O'Mara M; Chung SH
    Biophys J; 2004 Feb; 86(2):846-60. PubMed ID: 14747320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels.
    Bednarczyk P; Szewczyk A; Dołowy K
    Acta Biochim Pol; 2002; 49(4):869-75. PubMed ID: 12545193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics.
    Cheng MH; Cascio M; Coalson RD
    Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure.
    Reddy GL; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores: electrostatic effects of charged residues.
    Miloshevsky GV; Jordan PC
    Biophys J; 2004 Feb; 86(2):825-35. PubMed ID: 14747318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels.
    Jun I; Cheng MH; Sim E; Jung J; Suh BL; Kim Y; Son H; Park K; Kim CH; Yoon JH; Whitcomb DC; Bahar I; Lee MG
    J Physiol; 2016 Jun; 594(11):2929-55. PubMed ID: 26663196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory.
    Noskov SY; Im W; Roux B
    Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of charged residues in coupling ligand binding and channel activation in the extracellular domain of the glycine receptor.
    Absalom NL; Lewis TM; Kaplan W; Pierce KD; Schofield PR
    J Biol Chem; 2003 Dec; 278(50):50151-7. PubMed ID: 14525990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of anionic conduction across ClC.
    Cohen J; Schulten K
    Biophys J; 2004 Feb; 86(2):836-45. PubMed ID: 14747319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The startle disease mutation Q266H, in the second transmembrane domain of the human glycine receptor, impairs channel gating.
    Moorhouse AJ; Jacques P; Barry PH; Schofield PR
    Mol Pharmacol; 1999 Feb; 55(2):386-95. PubMed ID: 9927632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel.
    Qu Z; Hartzell C
    J Gen Physiol; 2004 Oct; 124(4):371-82. PubMed ID: 15452198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamics simulation for modeling ion permeation across bionanotubes.
    Krishnamurthy V; Chung SH
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):102-11. PubMed ID: 15816176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
    Corry B
    Biophys J; 2006 Feb; 90(3):799-810. PubMed ID: 16284265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the glycine receptor deduced from Brownian dynamics studies.
    O'Mara M; Barry PH; Chung SH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4310-5. PubMed ID: 12649321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.
    Kim S; Chamberlain AK; Bowie JU
    Biophys J; 2004 Aug; 87(2):792-9. PubMed ID: 15298888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels.
    Chen J; Tomich JM
    Biochim Biophys Acta; 2014 Sep; 1838(9):2319-25. PubMed ID: 24582709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of proline 250 (P-2') to pore diameter and ion selectivity in the human glycine receptor channel.
    Lee DJ; Keramidas A; Moorhouse AJ; Schofield PR; Barry PH
    Neurosci Lett; 2003 Nov; 351(3):196-200. PubMed ID: 14623139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance.
    Spronk SA; Elmore DE; Dougherty DA
    Biophys J; 2006 May; 90(10):3555-69. PubMed ID: 16500980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.