BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16986439)

  • 1. Retrotransposon gtwin specific for the Drosophila melanogaster subgroup.
    Kotnova AP; Feoktistova MA; Glukhov IA; Salenko VB; Lyubomirskaya NV; Kimb AI; Ilyina YV
    Dokl Biochem Biophys; 2006; 409():233-5. PubMed ID: 16986439
    [No Abstract]   [Full Text] [Related]  

  • 2. Retrotransposon gtwin in the Drosophila melanogaster laboratory strain G-32: an increased number of copies of this element in the genome caused chromosomal aberration.
    Stefanov YE; Kotnova AP; Pasyukova EG; Lyubomirskaya NV; Kim AI; Il'in YV
    Dokl Biochem Biophys; 2007; 413():76-8. PubMed ID: 17546958
    [No Abstract]   [Full Text] [Related]  

  • 3. Evolutionary pattern of the gtwin retrotransposon in the Drosophila melanogaster subgroup.
    Ludwig A; Loreto EL
    Genetica; 2007 Jun; 130(2):161-8. PubMed ID: 16897442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for recent horizontal transfer of gypsy-homologous LTR-retrotransposon gtwin into Drosophila erecta followed by its amplification with multiple aberrations.
    Kotnova AP; Glukhov IA; Karpova NN; Salenko VB; Lyubomirskaya NV; Ilyin YV
    Gene; 2007 Jul; 396(1):39-45. PubMed ID: 17459613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome.
    Maisonhaute C; Ogereau D; Hua-Van A; Capy P
    Gene; 2007 May; 393(1-2):116-26. PubMed ID: 17382490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertical inheritance and bursts of transposition have shaped the evolution of the BS non-LTR retrotransposon in Drosophila.
    Granzotto A; Lopes FR; Vieira C; Carareto CM
    Mol Genet Genomics; 2011 Jul; 286(1):57-66. PubMed ID: 21618036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements.
    Losada A; Abad JP; Agudo M; Villasante A
    Mol Biol Evol; 1999 Oct; 16(10):1341-6. PubMed ID: 10563015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence divergence within transposable element families in the Drosophila melanogaster genome.
    Lerat E; Rizzon C; Biémont C
    Genome Res; 2003 Aug; 13(8):1889-96. PubMed ID: 12869581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary pathways of the tirant LTR retrotransposon in the Drosophila melanogaster subgroup of species.
    Fablet M; Souames S; Biémont C; Vieira C
    J Mol Evol; 2007 Apr; 64(4):438-47. PubMed ID: 17390093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in genome size between closely related species: the Drosophila melanogaster species subgroup.
    Boulesteix M; Weiss M; Biémont C
    Mol Biol Evol; 2006 Jan; 23(1):162-7. PubMed ID: 16151184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. msechBari, a new MITE-like element in Drosophila sechellia related to the Bari transposon.
    Dias ES; Carareto CM
    Genet Res (Camb); 2011 Dec; 93(6):381-5. PubMed ID: 22189603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake up of transposable elements following Drosophila simulans worldwide colonization.
    Vieira C; Lepetit D; Dumont S; Biémont C
    Mol Biol Evol; 1999 Sep; 16(9):1251-5. PubMed ID: 10486980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heterochromatic copies of the LTR retrotransposons as a record of the genomic events that have shaped the Drosophila melanogaster genome.
    Mugnier N; Gueguen L; Vieira C; Biémont C
    Gene; 2008 Mar; 411(1-2):87-93. PubMed ID: 18281162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rare family of gtwin retrotransposon carrying a mutation in the tRNA-primer binding site is amplified in G-32 Drosophila melanogaster strain.
    Salenko VB; Kotnova AP; Glukhov IA; Stefanov YE; Surkov SA; Lyubomirskaya NV; Ilyin YV
    Dokl Biochem Biophys; 2011; 436():16-9. PubMed ID: 21369895
    [No Abstract]   [Full Text] [Related]  

  • 15. LTR retrotransposon-gene associations in Drosophila melanogaster.
    Ganko EW; Greene CS; Lewis JA; Bhattacharjee V; McDonald JF
    J Mol Evol; 2006 Jan; 62(1):111-20. PubMed ID: 16408244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for horizontal transfer of the LTR retrotransposon mdg3, which lacks an env gene.
    Syomin BV; Leonova TY; Ilyin YV
    Mol Genet Genomics; 2002 May; 267(3):418-23. PubMed ID: 12073044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural heterogeneity and genomic distribution of Drosophila melanogaster LTR-retrotransposons.
    Alonso-González L; Domínguez A; Albornoz J
    Mol Biol Evol; 2003 Mar; 20(3):401-9. PubMed ID: 12644561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrotransposon-gene associations are widespread among D. melanogaster populations.
    Franchini LF; Ganko EW; McDonald JF
    Mol Biol Evol; 2004 Jul; 21(7):1323-31. PubMed ID: 15014149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster.
    Bergman CM; Bensasson D
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11340-5. PubMed ID: 17592135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting horizontal transfer of transposable elements in Drosophila.
    Loreto EL; Carareto CM; Capy P
    Heredity (Edinb); 2008 Jun; 100(6):545-54. PubMed ID: 18431403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.