BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16986628)

  • 1. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach.
    van Riel NA; Sontag ED
    Syst Biol (Stevenage); 2006 Jul; 153(4):263-74. PubMed ID: 16986628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes.
    Rantanen A; Mielikäinen T; Rousu J; Maaheimo H; Ukkonen E
    Bioinformatics; 2006 May; 22(10):1198-206. PubMed ID: 16504982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic control analysis under uncertainty: framework development and case studies.
    Wang L; Birol I; Hatzimanikatis V
    Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Dependent Gene Network Modelling by Sequential Monte Carlo.
    Ancherbak S; Kuruoglu EE; Vingron M
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1183-1193. PubMed ID: 26540693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.
    Maczek J; Junne S; Nowak P; Goetz P
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):241-52. PubMed ID: 16838149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.
    Sánchez BJ; Pérez-Correa JR; Agosin E
    Metab Eng; 2014 Sep; 25():159-73. PubMed ID: 25046158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing and analyzing a large-scale gene-to-gene regulatory network--lasso-constrained inference and biological validation.
    Gustafsson M; Hörnquist M; Lombardi A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):254-61. PubMed ID: 17044188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering molecular pathways from protein interaction and gene expression data.
    Segal E; Wang H; Koller D
    Bioinformatics; 2003; 19 Suppl 1():i264-71. PubMed ID: 12855469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representing perturbed dynamics in biological network models.
    Stoll G; Rougemont J; Naef F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011917. PubMed ID: 17677504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.
    Zou M; Conzen SD
    Bioinformatics; 2005 Jan; 21(1):71-9. PubMed ID: 15308537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM).
    Song HS; Ramkrishna D
    Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering under uncertainty--II: analysis of yeast metabolism.
    Wang L; Hatzimanikatis V
    Metab Eng; 2006 Mar; 8(2):142-59. PubMed ID: 16413809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks.
    di Bernardo D; Thompson MJ; Gardner TS; Chobot SE; Eastwood EL; Wojtovich AP; Elliott SJ; Schaus SE; Collins JJ
    Nat Biotechnol; 2005 Mar; 23(3):377-83. PubMed ID: 15765094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring network interactions within a cell.
    Carter GW
    Brief Bioinform; 2005 Dec; 6(4):380-9. PubMed ID: 16420736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.