BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16987614)

  • 1. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently.
    Waller RF; Keeling PJ
    Gene; 2006 Nov; 383():33-7. PubMed ID: 16987614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A green algal apicoplast ancestor.
    Funes S; Davidson E; Reyes-Prieto A; Magallón S; Herion P; King MP; González-Halphen D
    Science; 2002 Dec; 298(5601):2155. PubMed ID: 12481129
    [No Abstract]   [Full Text] [Related]  

  • 3. Regular spliceosomal introns are invasive in Chlamydomonas reinhardtii: 15 introns in the recently relocated mitochondrial cox2 and cox3 genes.
    Watanabe KI; Ohama T
    J Mol Evol; 2001; 53(4-5):333-9. PubMed ID: 11675593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A first glimpse into the pattern and scale of gene transfer in Apicomplexa.
    Huang J; Mullapudi N; Sicheritz-Ponten T; Kissinger JC
    Int J Parasitol; 2004 Mar; 34(3):265-74. PubMed ID: 15003488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes.
    Slamovits CH; Saldarriaga JF; Larocque A; Keeling PJ
    J Mol Biol; 2007 Sep; 372(2):356-68. PubMed ID: 17655860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae.
    Pombert JF; Otis C; Lemieux C; Turmel M
    Mol Biol Evol; 2004 May; 21(5):922-35. PubMed ID: 15014170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans.
    Danne JC; Gornik SG; Macrae JI; McConville MJ; Waller RF
    Mol Biol Evol; 2013 Jan; 30(1):123-39. PubMed ID: 22923466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species-specific mitochondrial gene rearrangements in biting midges and vector species identification.
    Matsumoto Y; Yanase T; Tsuda T; Noda H
    Med Vet Entomol; 2009 Mar; 23(1):47-55. PubMed ID: 19239613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of iron-containing superoxide dismutases in the heterotrophic dinoflagellate Crypthecodinium cohnii.
    Dufernez F; Derelle E; Noël C; Sanciu G; Mantini C; Dive D; Soyer-Gobillard MO; Capron M; Pierce RJ; Wintjens R; Guillebault D; Viscogliosi E
    Protist; 2008 Apr; 159(2):223-38. PubMed ID: 18276189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Babesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts.
    Lau AO; McElwain TF; Brayton KA; Knowles DP; Roalson EH
    Exp Parasitol; 2009 Nov; 123(3):236-43. PubMed ID: 19646439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionarily recent, insertional fission of mitochondrial cox2 into complementary genes in bilaterian Metazoa.
    Szafranski P
    BMC Genomics; 2017 Mar; 18(1):269. PubMed ID: 28359330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic analysis indicates bacteria-to-apicoplast lateral gene transfer.
    Zhu XY
    Yi Chuan Xue Bao; 2004 Nov; 31(11):1316-20. PubMed ID: 15651686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the mitochondrial genome in the dinoflagellate Amphidinium carterae.
    Nash EA; Barbrook AC; Edwards-Stuart RK; Bernhardt K; Howe CJ; Nisbet RE
    Mol Biol Evol; 2007 Jul; 24(7):1528-36. PubMed ID: 17440175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
    Gile GH; Patron NJ; Keeling PJ
    Protist; 2006 Oct; 157(4):435-44. PubMed ID: 16904374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastid genes in a non-photosynthetic dinoflagellate.
    Sanchez-Puerta MV; Lippmeier JC; Apt KE; Delwiche CF
    Protist; 2007 Jan; 158(1):105-17. PubMed ID: 17150410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are prorocentroid dinoflagellates monophyletic? A study of 25 species based on nuclear and mitochondrial genes.
    Murray S; Ip CL; Moore R; Nagahama Y; Fukuyo Y
    Protist; 2009 May; 160(2):245-64. PubMed ID: 19217347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation of mitochondrial large subunit rRNA in the dinoflagellate Alexandrium catenella and the evolution of rRNA structure in alveolate mitochondria.
    Kamikawa R; Inagaki Y; Sako Y
    Protist; 2007 Apr; 158(2):239-45. PubMed ID: 17291829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative gene evolution in haemosporidian (apicomplexa) parasites of birds and mammals.
    Outlaw DC; Ricklefs RE
    Mol Biol Evol; 2010 Mar; 27(3):537-42. PubMed ID: 19933837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta).
    Rodríguez-Salinas E; Riveros-Rosas H; Li Z; Fucíková K; Brand JJ; Lewis LA; González-Halphen D
    Mol Phylogenet Evol; 2012 Jul; 64(1):166-76. PubMed ID: 22724135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.