BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16987659)

  • 1. Metal complexes with superoxide dismutase-like activity as candidates for anti-prion drug.
    Fukuuchi T; Doh-Ura K; Yoshihara S; Ohta S
    Bioorg Med Chem Lett; 2006 Dec; 16(23):5982-7. PubMed ID: 16987659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper is required for prion protein-associated superoxide dismutase-I activity in Pichia pastoris.
    Treiber C; Pipkorn R; Weise C; Holland G; Multhaup G
    FEBS J; 2007 Mar; 274(5):1304-11. PubMed ID: 17263729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Prion protein and copper: a mysterious relationship].
    Rachidi W; Riondel J; McMahon HM; Favier A
    Pathol Biol (Paris); 2005 May; 53(4):244-50. PubMed ID: 15850959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper has differential effect on prion protein with polymorphism of position 129.
    Wong BS; Clive C; Haswell SJ; Williamson RA; Burton DR; Gambetti P; Sy MS; Jones IM; Brown DR
    Biochem Biophys Res Commun; 2000 Mar; 269(3):726-31. PubMed ID: 10720484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contribution of superoxide dismutase activity by prion protein in vivo.
    Wong BS; Pan T; Liu T; Li R; Gambetti P; Sy MS
    Biochem Biophys Res Commun; 2000 Jun; 273(1):136-9. PubMed ID: 10873575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(II) complexes with an avian prion N-terminal region and their potential SOD-like activity.
    La Mendola D; Bonomo RP; Caminati S; Di Natale G; Emmi SS; Hansson O; Maccarrone G; Pappalardo G; Pietropaolo A; Rizzarelli E
    J Inorg Biochem; 2009 Feb; 103(2):195-204. PubMed ID: 19019452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can chicken and human PrPs possess SOD-like activity after beta-cleavage?
    Stańczak P; Kozlowski H
    Biochem Biophys Res Commun; 2007 Jan; 352(1):198-202. PubMed ID: 17112476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The whole hexapeptide repeats domain from avian PrP displays untypical hallmarks in aspect of the Cu2+ complexes formation.
    Stańczak P; Juszczyk P; Grzonka Z; Kozłowski H
    FEBS Lett; 2007 Sep; 581(23):4544-8. PubMed ID: 17803992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of prion protein expression on metal metabolism.
    Kralovicova S; Fontaine SN; Alderton A; Alderman J; Ragnarsdottir KV; Collins SJ; Brown DR
    Mol Cell Neurosci; 2009 Jun; 41(2):135-47. PubMed ID: 19233277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper binding to the neurotoxic peptide PrP106-126: thermodynamic and structural studies.
    Belosi B; Gaggelli E; Guerrini R; Kozłowski H; Łuczkowski M; Mancini FM; Remelli M; Valensin D; Valensin G
    Chembiochem; 2004 Mar; 5(3):349-59. PubMed ID: 14997527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased brain copper due to copper deficiency has no effect on bovine prion proteins.
    Legleiter LR; Ahola JK; Engle TE; Spears JW
    Biochem Biophys Res Commun; 2007 Jan; 352(4):884-8. PubMed ID: 17157816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal ion chelating peptides with superoxide dismutase activity.
    Fisher AE; Naughton DP
    Biomed Pharmacother; 2005 May; 59(4):158-62. PubMed ID: 15862709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology.
    Legleiter LR; Spears JW; Liu HC
    J Anim Sci; 2008 Nov; 86(11):3069-78. PubMed ID: 18599661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-dependent degradation of recombinant ovine prion protein. Phosphatidylinositol stimulates aggregation and copper-driven disappearance of prion protein.
    Tsiroulnikov K; Chobert JM; Haertlé T
    FEBS J; 2006 May; 273(9):1959-65. PubMed ID: 16640559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper refolding of prion protein.
    Wong BS; Vénien-Bryan C; Williamson RA; Burton DR; Gambetti P; Sy MS; Brown DR; Jones IM
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1217-24. PubMed ID: 11027613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein.
    Kenward AG; Bartolotti LJ; Burns CS
    Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on Cu(II) binding modes and antioxidant activity of mammalian normal prion protein.
    Ji HF; Zhang HY
    Chem Res Toxicol; 2004 Apr; 17(4):471-5. PubMed ID: 15089089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and voltammetric characterization of the metal binding to the prion protein: insights into pH dependence and redox chemistry.
    Davies P; Marken F; Salter S; Brown DR
    Biochemistry; 2009 Mar; 48(12):2610-9. PubMed ID: 19196019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles.
    Sánchez-Guadarrama O; López-Sandoval H; Sánchez-Bartéz F; Gracia-Mora I; Höpfl H; Barba-Behrens N
    J Inorg Biochem; 2009 Sep; 103(9):1204-13. PubMed ID: 19628280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.