These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 16987659)
1. Metal complexes with superoxide dismutase-like activity as candidates for anti-prion drug. Fukuuchi T; Doh-Ura K; Yoshihara S; Ohta S Bioorg Med Chem Lett; 2006 Dec; 16(23):5982-7. PubMed ID: 16987659 [TBL] [Abstract][Full Text] [Related]
2. Copper is required for prion protein-associated superoxide dismutase-I activity in Pichia pastoris. Treiber C; Pipkorn R; Weise C; Holland G; Multhaup G FEBS J; 2007 Mar; 274(5):1304-11. PubMed ID: 17263729 [TBL] [Abstract][Full Text] [Related]
3. [Prion protein and copper: a mysterious relationship]. Rachidi W; Riondel J; McMahon HM; Favier A Pathol Biol (Paris); 2005 May; 53(4):244-50. PubMed ID: 15850959 [TBL] [Abstract][Full Text] [Related]
4. Copper has differential effect on prion protein with polymorphism of position 129. Wong BS; Clive C; Haswell SJ; Williamson RA; Burton DR; Gambetti P; Sy MS; Jones IM; Brown DR Biochem Biophys Res Commun; 2000 Mar; 269(3):726-31. PubMed ID: 10720484 [TBL] [Abstract][Full Text] [Related]
5. Differential contribution of superoxide dismutase activity by prion protein in vivo. Wong BS; Pan T; Liu T; Li R; Gambetti P; Sy MS Biochem Biophys Res Commun; 2000 Jun; 273(1):136-9. PubMed ID: 10873575 [TBL] [Abstract][Full Text] [Related]
6. Copper(II) complexes with an avian prion N-terminal region and their potential SOD-like activity. La Mendola D; Bonomo RP; Caminati S; Di Natale G; Emmi SS; Hansson O; Maccarrone G; Pappalardo G; Pietropaolo A; Rizzarelli E J Inorg Biochem; 2009 Feb; 103(2):195-204. PubMed ID: 19019452 [TBL] [Abstract][Full Text] [Related]
7. Can chicken and human PrPs possess SOD-like activity after beta-cleavage? Stańczak P; Kozlowski H Biochem Biophys Res Commun; 2007 Jan; 352(1):198-202. PubMed ID: 17112476 [TBL] [Abstract][Full Text] [Related]
8. The whole hexapeptide repeats domain from avian PrP displays untypical hallmarks in aspect of the Cu2+ complexes formation. Stańczak P; Juszczyk P; Grzonka Z; Kozłowski H FEBS Lett; 2007 Sep; 581(23):4544-8. PubMed ID: 17803992 [TBL] [Abstract][Full Text] [Related]
9. The effects of prion protein expression on metal metabolism. Kralovicova S; Fontaine SN; Alderton A; Alderman J; Ragnarsdottir KV; Collins SJ; Brown DR Mol Cell Neurosci; 2009 Jun; 41(2):135-47. PubMed ID: 19233277 [TBL] [Abstract][Full Text] [Related]
10. Copper binding to the neurotoxic peptide PrP106-126: thermodynamic and structural studies. Belosi B; Gaggelli E; Guerrini R; Kozłowski H; Łuczkowski M; Mancini FM; Remelli M; Valensin D; Valensin G Chembiochem; 2004 Mar; 5(3):349-59. PubMed ID: 14997527 [TBL] [Abstract][Full Text] [Related]
11. Decreased brain copper due to copper deficiency has no effect on bovine prion proteins. Legleiter LR; Ahola JK; Engle TE; Spears JW Biochem Biophys Res Commun; 2007 Jan; 352(4):884-8. PubMed ID: 17157816 [TBL] [Abstract][Full Text] [Related]
12. Metal ion chelating peptides with superoxide dismutase activity. Fisher AE; Naughton DP Biomed Pharmacother; 2005 May; 59(4):158-62. PubMed ID: 15862709 [TBL] [Abstract][Full Text] [Related]
13. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology. Legleiter LR; Spears JW; Liu HC J Anim Sci; 2008 Nov; 86(11):3069-78. PubMed ID: 18599661 [TBL] [Abstract][Full Text] [Related]
14. Copper-dependent degradation of recombinant ovine prion protein. Phosphatidylinositol stimulates aggregation and copper-driven disappearance of prion protein. Tsiroulnikov K; Chobert JM; Haertlé T FEBS J; 2006 May; 273(9):1959-65. PubMed ID: 16640559 [TBL] [Abstract][Full Text] [Related]
15. Copper refolding of prion protein. Wong BS; Vénien-Bryan C; Williamson RA; Burton DR; Gambetti P; Sy MS; Brown DR; Jones IM Biochem Biophys Res Commun; 2000 Oct; 276(3):1217-24. PubMed ID: 11027613 [TBL] [Abstract][Full Text] [Related]
16. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein. Kenward AG; Bartolotti LJ; Burns CS Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047 [TBL] [Abstract][Full Text] [Related]
17. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
18. A theoretical study on Cu(II) binding modes and antioxidant activity of mammalian normal prion protein. Ji HF; Zhang HY Chem Res Toxicol; 2004 Apr; 17(4):471-5. PubMed ID: 15089089 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic and voltammetric characterization of the metal binding to the prion protein: insights into pH dependence and redox chemistry. Davies P; Marken F; Salter S; Brown DR Biochemistry; 2009 Mar; 48(12):2610-9. PubMed ID: 19196019 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles. Sánchez-Guadarrama O; López-Sandoval H; Sánchez-Bartéz F; Gracia-Mora I; Höpfl H; Barba-Behrens N J Inorg Biochem; 2009 Sep; 103(9):1204-13. PubMed ID: 19628280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]