BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16987677)

  • 1. Polar cod, Boreogadus saida (Gadidae), show an intermediate stress response between Antarctic and temperate fishes.
    Whiteley NM; Christiansen JS; Egginton S
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Dec; 145(4):493-501. PubMed ID: 16987677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of parvalbumin from the Arctic cod (Boreogadus saida): similarity in calcium affinity among parvalbumins from polar teleosts.
    Erickson JR; Moerland TS
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Feb; 143(2):228-33. PubMed ID: 16412673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of branchial artery tone in fish: effects of environmental temperature and phylogeny.
    Hill JV; Egginton S
    Physiol Biochem Zool; 2010; 83(1):33-42. PubMed ID: 19938979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxygen transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin.
    Verde C; Balestrieri M; de Pascale D; Pagnozzi D; Lecointre G; di Prisco G
    J Biol Chem; 2006 Aug; 281(31):22073-22084. PubMed ID: 16717098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of thermal adaptation in polar fish.
    Verde C; Parisi E; di Prisco G
    Gene; 2006 Dec; 385():137-45. PubMed ID: 16757135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper thermal limits of cardiac function for Arctic cod Boreogadus saida, a key food web fish species in the Arctic Ocean.
    Drost HE; Carmack EC; Farrell AP
    J Fish Biol; 2014 Jun; 84(6):1781-92. PubMed ID: 24814099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal baseline levels of physiological and biochemical parameters in polar cod (Boreogadus saida): Implications for environmental monitoring.
    Nahrgang J; Camus L; Broms F; Christiansen JS; Hop H
    Mar Pollut Bull; 2010 Aug; 60(8):1336-45. PubMed ID: 20385393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of locomotion places selective pressures on Antarctic and temperate labriform swimming fish.
    Tuckey N; Davison W
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):391-8. PubMed ID: 15313495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic capacities and swimming performance of polar cod (
    Kunz KL; Claireaux G; Pörtner HO; Knust R; Mark FC
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30190318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat tolerance and its plasticity in Antarctic fishes.
    Bilyk KT; Devries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antarctic fishes have a limited capacity for catecholamine synthesis.
    Whiteley NM; Egginton S
    J Exp Biol; 1999 Dec; 202(Pt 24):3623-9. PubMed ID: 10574739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood.
    Kent D; Drost HE; Fisher J; Oyama T; Farrell AP
    J Fish Biol; 2016 Mar; 88(3):1241-8. PubMed ID: 26832071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper thermal limits of the hearts of Arctic cod Boreogadus saida: adults compared with larvae.
    Drost HE; Fisher J; Randall F; Kent D; Carmack EC; Farrell AP
    J Fish Biol; 2016 Feb; 88(2):718-26. PubMed ID: 26608719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adaptation of polar fishes to climatic changes: Structure, function and phylogeny of haemoglobin.
    Verde C; Giordano D; di Prisco G
    IUBMB Life; 2008 Jan; 60(1):29-40. PubMed ID: 18379990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of acute stress on plasma levels of catecholamines and cortisol in addition to metabolites in stress-susceptible growing swine].
    Neubert E; Gürtler H; Vallentin G
    Berl Munch Tierarztl Wochenschr; 1996 Oct; 109(10):381-4. PubMed ID: 8999769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress.
    Hosoya S; Johnson SC; Iwama GK; Gamperl AK; Afonso LO
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):78-86. PubMed ID: 17045829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The immune and stress responses of Atlantic cod to long-term increases in water temperature.
    Pérez-Casanova JC; Rise ML; Dixon B; Afonso LO; Hall JR; Johnson SC; Gamperl AK
    Fish Shellfish Immunol; 2008 May; 24(5):600-9. PubMed ID: 18343685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of plasma glucocorticoids in pallid sturgeon in response to stress.
    Webb MA; Allert JA; Kappenman KM; Marcos J; Feist GW; Schreck CB; Shackleton CH
    Gen Comp Endocrinol; 2007; 154(1-3):98-104. PubMed ID: 17632105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia.
    Chen WH; Sun LT; Tsai CL; Song YL; Chang CF
    Gen Comp Endocrinol; 2002 Mar; 126(1):90-100. PubMed ID: 11944970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.