These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 16987954)
1. Tracking of quantum dot-labeled CFTR shows near immobilization by C-terminal PDZ interactions. Haggie PM; Kim JK; Lukacs GL; Verkman AS Mol Biol Cell; 2006 Dec; 17(12):4937-45. PubMed ID: 16987954 [TBL] [Abstract][Full Text] [Related]
2. Increased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminal PDZ binding motif. Haggie PM; Stanton BA; Verkman AS J Biol Chem; 2004 Feb; 279(7):5494-500. PubMed ID: 14660592 [TBL] [Abstract][Full Text] [Related]
3. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia. Benharouga M; Sharma M; So J; Haardt M; Drzymala L; Popov M; Schwapach B; Grinstein S; Du K; Lukacs GL J Biol Chem; 2003 Jun; 278(24):22079-89. PubMed ID: 12651858 [TBL] [Abstract][Full Text] [Related]
4. A PDZ-interacting domain in CFTR is an apical membrane polarization signal. Moyer BD; Denton J; Karlson KH; Reynolds D; Wang S; Mickle JE; Milewski M; Cutting GR; Guggino WB; Li M; Stanton BA J Clin Invest; 1999 Nov; 104(10):1353-61. PubMed ID: 10562297 [TBL] [Abstract][Full Text] [Related]
5. E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. Sun F; Hug MJ; Lewarchik CM; Yun CH; Bradbury NA; Frizzell RA J Biol Chem; 2000 Sep; 275(38):29539-46. PubMed ID: 10893422 [TBL] [Abstract][Full Text] [Related]
6. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Favia M; Guerra L; Fanelli T; Cardone RA; Monterisi S; Di Sole F; Castellani S; Chen M; Seidler U; Reshkin SJ; Conese M; Casavola V Mol Biol Cell; 2010 Jan; 21(1):73-86. PubMed ID: 19889841 [TBL] [Abstract][Full Text] [Related]
8. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Sharma N; LaRusch J; Sosnay PR; Gottschalk LB; Lopez AP; Pellicore MJ; Evans T; Davis E; Atalar M; Na CH; Rosson GD; Belchis D; Milewski M; Pandey A; Cutting GR Am J Physiol Lung Cell Mol Physiol; 2016 Dec; 311(6):L1170-L1182. PubMed ID: 27793802 [TBL] [Abstract][Full Text] [Related]
9. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958 [TBL] [Abstract][Full Text] [Related]
10. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Castellani S; Guerra L; Favia M; Di Gioia S; Casavola V; Conese M Lab Invest; 2012 Nov; 92(11):1527-40. PubMed ID: 22964850 [TBL] [Abstract][Full Text] [Related]
11. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249 [TBL] [Abstract][Full Text] [Related]
12. Ezrin controls the macromolecular complexes formed between an adapter protein Na+/H+ exchanger regulatory factor and the cystic fibrosis transmembrane conductance regulator. Li J; Dai Z; Jana D; Callaway DJ; Bu Z J Biol Chem; 2005 Nov; 280(45):37634-43. PubMed ID: 16129695 [TBL] [Abstract][Full Text] [Related]
13. Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors. Lee JH; Richter W; Namkung W; Kim KH; Kim E; Conti M; Lee MG J Biol Chem; 2007 Apr; 282(14):10414-22. PubMed ID: 17244609 [TBL] [Abstract][Full Text] [Related]
14. The relative binding affinities of PDZ partners for CFTR: a biochemical basis for efficient endocytic recycling. Cushing PR; Fellows A; Villone D; Boisguérin P; Madden DR Biochemistry; 2008 Sep; 47(38):10084-98. PubMed ID: 18754678 [TBL] [Abstract][Full Text] [Related]
15. Role of the scaffold protein RACK1 in apical expression of CFTR. Auerbach M; Liedtke CM Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124 [TBL] [Abstract][Full Text] [Related]
16. The PDZ-interacting domain of cystic fibrosis transmembrane conductance regulator is required for functional expression in the apical plasma membrane. Moyer BD; Duhaime M; Shaw C; Denton J; Reynolds D; Karlson KH; Pfeiffer J; Wang S; Mickle JE; Milewski M; Cutting GR; Guggino WB; Li M; Stanton BA J Biol Chem; 2000 Sep; 275(35):27069-74. PubMed ID: 10852925 [TBL] [Abstract][Full Text] [Related]
17. Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50. Mohler PJ; Kreda SM; Boucher RC; Sudol M; Stutts MJ; Milgram SL J Cell Biol; 1999 Nov; 147(4):879-90. PubMed ID: 10562288 [TBL] [Abstract][Full Text] [Related]
18. CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia. Zhang W; Zhang Z; Zhang Y; Naren AP Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869532 [TBL] [Abstract][Full Text] [Related]
19. Membrane lateral diffusion and capture of CFTR within transient confinement zones. Bates IR; Hébert B; Luo Y; Liao J; Bachir AI; Kolin DL; Wiseman PW; Hanrahan JW Biophys J; 2006 Aug; 91(3):1046-58. PubMed ID: 16714353 [TBL] [Abstract][Full Text] [Related]
20. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes. Wu Y; Wang S; Li C J Vis Exp; 2012 Aug; (66):. PubMed ID: 22907480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]