These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 16988012)
1. Endogenous hepatic expression of the hepatitis B virus X-associated protein 2 is adequate for maximal association with aryl hydrocarbon receptor-90-kDa heat shock protein complexes. Hollingshead BD; Patel RD; Perdew GH Mol Pharmacol; 2006 Dec; 70(6):2096-107. PubMed ID: 16988012 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Meyer BK; Perdew GH Biochemistry; 1999 Jul; 38(28):8907-17. PubMed ID: 10413464 [TBL] [Abstract][Full Text] [Related]
3. Divergent roles of hepatitis B virus X-associated protein 2 (XAP2) in human versus mouse Ah receptor complexes. Ramadoss P; Petrulis JR; Hollingshead BD; Kusnadi A; Perdew GH Biochemistry; 2004 Jan; 43(3):700-9. PubMed ID: 14730974 [TBL] [Abstract][Full Text] [Related]
4. Role of endogenous XAP2 protein on the localization and nucleocytoplasmic shuttling of the endogenous mouse Ahb-1 receptor in the presence and absence of ligand. Pollenz RS; Wilson SE; Dougherty EJ Mol Pharmacol; 2006 Oct; 70(4):1369-79. PubMed ID: 16835354 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex. Ogiso H; Kagi N; Matsumoto E; Nishimoto M; Arai R; Shirouzu M; Mimura J; Fujii-Kuriyama Y; Yokoyama S Biochemistry; 2004 Dec; 43(49):15510-9. PubMed ID: 15581363 [TBL] [Abstract][Full Text] [Related]
6. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Cheng X; Maher J; Dieter MZ; Klaassen CD Drug Metab Dispos; 2005 Sep; 33(9):1276-82. PubMed ID: 15919853 [TBL] [Abstract][Full Text] [Related]
7. Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells. Schreck I; Chudziak D; Schneider S; Seidel A; Platt KL; Oesch F; Weiss C Toxicology; 2009 May; 259(3):91-6. PubMed ID: 19428948 [TBL] [Abstract][Full Text] [Related]
9. Modulation of aryl hydrocarbon receptor activity by four and a half LIM domain 2. Kollara A; Brown TJ Int J Biochem Cell Biol; 2009 May; 41(5):1182-8. PubMed ID: 19015043 [TBL] [Abstract][Full Text] [Related]
10. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport. Kawano Y; Nishiumi S; Tanaka S; Nobutani K; Miki A; Yano Y; Seo Y; Kutsumi H; Ashida H; Azuma T; Yoshida M Arch Biochem Biophys; 2010 Dec; 504(2):221-7. PubMed ID: 20831858 [TBL] [Abstract][Full Text] [Related]
11. Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. de Oliveira SK; Smolenski A Biochem Pharmacol; 2009 Feb; 77(4):723-33. PubMed ID: 18805402 [TBL] [Abstract][Full Text] [Related]
12. Targeted salmon gene array (SalArray): a toxicogenomic tool for gene expression profiling of interactions between estrogen and aryl hydrocarbon receptor signalling pathways. Mortensen AS; Arukwe A Chem Res Toxicol; 2007 Mar; 20(3):474-88. PubMed ID: 17291011 [TBL] [Abstract][Full Text] [Related]
13. Effect of beta-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig. Nannelli A; Rossignolo F; Tolando R; Rossato P; Longo V; Gervasi PG Toxicology; 2009 Nov; 265(3):69-79. PubMed ID: 19786062 [TBL] [Abstract][Full Text] [Related]
14. Tissue distribution and function of the Aryl hydrocarbon receptor repressor (AhRR) in C57BL/6 and Aryl hydrocarbon receptor deficient mice. Bernshausen T; Jux B; Esser C; Abel J; Fritsche E Arch Toxicol; 2006 Apr; 80(4):206-11. PubMed ID: 16205913 [TBL] [Abstract][Full Text] [Related]
15. Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Han Z; Miwa Y; Obikane H; Mitsumata M; Takahashi-Yanaga F; Morimoto S; Sasaguri T Cardiovasc Res; 2008 Mar; 77(4):809-18. PubMed ID: 18065768 [TBL] [Abstract][Full Text] [Related]
16. Constitutive activation and environmental chemical induction of the aryl hydrocarbon receptor/transcription factor in activated human B lymphocytes. Allan LL; Sherr DH Mol Pharmacol; 2005 May; 67(5):1740-50. PubMed ID: 15681594 [TBL] [Abstract][Full Text] [Related]
17. Recombinant aryl hydrocarbon receptors for bioassay of aryl hydrocarbon receptor ligands in transgenic tobacco plants. Kodama S; Okada K; Akimoto K; Inui H; Ohkawa H Plant Biotechnol J; 2009 Feb; 7(2):119-28. PubMed ID: 19055610 [TBL] [Abstract][Full Text] [Related]
18. The aryl hydrocarbon receptor constitutively represses c-myc transcription in human mammary tumor cells. Yang X; Liu D; Murray TJ; Mitchell GC; Hesterman EV; Karchner SI; Merson RR; Hahn ME; Sherr DH Oncogene; 2005 Nov; 24(53):7869-81. PubMed ID: 16091746 [TBL] [Abstract][Full Text] [Related]
19. Regulation of aryl hydrocarbon receptor activity in porcine cumulus-oocyte complexes in physiological and toxicological conditions: the role of follicular fluid. Nestler D; Risch M; Fischer B; Pocar P Reproduction; 2007 May; 133(5):887-97. PubMed ID: 17616719 [TBL] [Abstract][Full Text] [Related]
20. Microarray-based compendium of hepatic gene expression profiles for prototypical ADME gene-inducing compounds in rats and mice in vivo. Slatter JG; Cheng O; Cornwell PD; de Souza A; Rockett J; Rushmore T; Hartley D; Evers R; He Y; Dai X; Hu R; Caguyong M; Roberts CJ; Castle J; Ulrich RG Xenobiotica; 2006; 36(10-11):902-37. PubMed ID: 17118914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]