These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16988277)
1. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Shea JM; Kechichian TB; Luberto C; Del Poeta M Infect Immun; 2006 Oct; 74(10):5977-88. PubMed ID: 16988277 [TBL] [Abstract][Full Text] [Related]
2. Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in Cryptococcus neoformans. Farnoud AM; Mor V; Singh A; Del Poeta M FEBS Lett; 2014 Nov; 588(21):3932-8. PubMed ID: 25240197 [TBL] [Abstract][Full Text] [Related]
3. Characterization of inositol phospho-sphingolipid-phospholipase C 1 (Isc1) in Cryptococcus neoformans reveals unique biochemical features. Henry J; Guillotte A; Luberto C; Del Poeta M FEBS Lett; 2011 Feb; 585(4):635-40. PubMed ID: 21256847 [TBL] [Abstract][Full Text] [Related]
4. Inositol Metabolism Regulates Capsule Structure and Virulence in the Human Pathogen Cryptococcus neoformans. Wang Y; Wear M; Kohli G; Vij R; Giamberardino C; Shah A; Toffaletti DL; Yu CA; Perfect JR; Casadevall A; Xue C mBio; 2021 Dec; 12(6):e0279021. PubMed ID: 34724824 [TBL] [Abstract][Full Text] [Related]
5. Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Santangelo R; Zoellner H; Sorrell T; Wilson C; Donald C; Djordjevic J; Shounan Y; Wright L Infect Immun; 2004 Apr; 72(4):2229-39. PubMed ID: 15039347 [TBL] [Abstract][Full Text] [Related]
6. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Kechichian TB; Shea J; Del Poeta M Infect Immun; 2007 Oct; 75(10):4792-8. PubMed ID: 17664261 [TBL] [Abstract][Full Text] [Related]
7. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Singh A; Wang H; Silva LC; Na C; Prieto M; Futerman AH; Luberto C; Del Poeta M Cell Microbiol; 2012 Apr; 14(4):500-16. PubMed ID: 22151739 [TBL] [Abstract][Full Text] [Related]
8. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice. Waterman SR; Hacham M; Panepinto J; Hu G; Shin S; Williamson PR Infect Immun; 2007 Feb; 75(2):714-22. PubMed ID: 17101662 [TBL] [Abstract][Full Text] [Related]
9. Fbp1-mediated ubiquitin-proteasome pathway controls Cryptococcus neoformans virulence by regulating fungal intracellular growth in macrophages. Liu TB; Xue C Infect Immun; 2014 Feb; 82(2):557-68. PubMed ID: 24478071 [TBL] [Abstract][Full Text] [Related]
10. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. Szymczak WA; Davis MJ; Lundy SK; Dufaud C; Olszewski M; Pirofski LA mBio; 2013 Jul; 4(4):. PubMed ID: 23820392 [TBL] [Abstract][Full Text] [Related]
11. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. Rittershaus PC; Kechichian TB; Allegood JC; Merrill AH; Hennig M; Luberto C; Del Poeta M J Clin Invest; 2006 Jun; 116(6):1651-9. PubMed ID: 16741577 [TBL] [Abstract][Full Text] [Related]
12. Virulence factors identified by Cryptococcus neoformans mutant screen differentially modulate lung immune responses and brain dissemination. He X; Lyons DM; Toffaletti DL; Wang F; Qiu Y; Davis MJ; Meister DL; Dayrit JK; Lee A; Osterholzer JJ; Perfect JR; Olszewski MA Am J Pathol; 2012 Oct; 181(4):1356-66. PubMed ID: 22846723 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic switching in a Cryptococcus neoformans variety gattii strain is associated with changes in virulence and promotes dissemination to the central nervous system. Jain N; Li L; McFadden DC; Banarjee U; Wang X; Cook E; Fries BC Infect Immun; 2006 Feb; 74(2):896-903. PubMed ID: 16428732 [TBL] [Abstract][Full Text] [Related]
14. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. Fu MS; Coelho C; De Leon-Rodriguez CM; Rossi DCP; Camacho E; Jung EH; Kulkarni M; Casadevall A PLoS Pathog; 2018 Jun; 14(6):e1007144. PubMed ID: 29906292 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Wormley FL; Heinrich G; Miller JL; Perfect JR; Cox GM Infect Immun; 2005 Aug; 73(8):5022-30. PubMed ID: 16041017 [TBL] [Abstract][Full Text] [Related]
16. An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease. Aaron PA; Vu K; Gelli A mBio; 2020 Jul; 11(4):. PubMed ID: 32694141 [No Abstract] [Full Text] [Related]
17. Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Sabiiti W; May RC Future Microbiol; 2012 Nov; 7(11):1297-313. PubMed ID: 23075448 [TBL] [Abstract][Full Text] [Related]
18. Cryptococcus neoformans hyperfilamentous strain is hypervirulent in a murine model of cryptococcal meningoencephalitis. Feretzaki M; Hardison SE; Wormley FL; Heitman J PLoS One; 2014; 9(8):e104432. PubMed ID: 25093333 [TBL] [Abstract][Full Text] [Related]
19. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Cox GM; McDade HC; Chen SC; Tucker SC; Gottfredsson M; Wright LC; Sorrell TC; Leidich SD; Casadevall A; Ghannoum MA; Perfect JR Mol Microbiol; 2001 Jan; 39(1):166-75. PubMed ID: 11123698 [TBL] [Abstract][Full Text] [Related]
20. Cryptococcus neoformans meningitis in the rat. Goldman DL; Casadevall A; Cho Y; Lee SC Lab Invest; 1996 Dec; 75(6):759-70. PubMed ID: 8973471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]