BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16988340)

  • 21. Soybean (Glycine max) transformation using mature cotyledonary node explants.
    Olhoft PM; Donovan CM; Somers DA
    Methods Mol Biol; 2006; 343():385-96. PubMed ID: 16988361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient gene expression in Medicago truncatula leaves via Agroinfiltration.
    Picard K; Lee R; Hellens R; Macknight R
    Methods Mol Biol; 2013; 1069():215-26. PubMed ID: 23996318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA.
    Confalonieri M; Borghetti R; Macovei A; Testoni C; Carbonera D; Fevereiro MP; Rommens C; Swords K; Piano E; Balestrazzi A
    Plant Cell Rep; 2010 Sep; 29(9):1013-21. PubMed ID: 20571798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of composite plants in Medicago truncatula used for nodulation assays.
    Deng Y; Mao G; Stutz W; Yu O
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21490571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soybean (Glycine max) transformation using immature cotyledon explants.
    Ko TS; Korban SS; Somers DA
    Methods Mol Biol; 2006; 343():397-405. PubMed ID: 16988362
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.
    Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH
    Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
    Kiirika LM; Bergmann HF; Schikowsky C; Wimmer D; Korte J; Schmitz U; Niehaus K; Colditz F
    Plant Physiol; 2012 May; 159(1):501-16. PubMed ID: 22399646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti.
    Zhang J; Subramanian S; Stacey G; Yu O
    Plant J; 2009 Jan; 57(1):171-83. PubMed ID: 18786000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brassica oleracea.
    Sparrow PA; Dale PJ; Irwin JA
    Methods Mol Biol; 2006; 343():417-26. PubMed ID: 16988364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards the elucidation of AM-specific transcription in Medicago truncatula.
    Krajinski F; Frenzel A
    Phytochemistry; 2007 Jan; 68(1):75-81. PubMed ID: 17141285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red clover (Trifolium pratense).
    Sullivan ML; Quesenberry KH
    Methods Mol Biol; 2006; 343():369-83. PubMed ID: 16988360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Japonica rice varieties (Oryza sativa, Nipponbare, and others).
    Hervé P; Kayano T
    Methods Mol Biol; 2006; 343():213-22. PubMed ID: 16988346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eggplant (Solanum melongena L.).
    Van Eck J; Snyder A
    Methods Mol Biol; 2006; 343():439-47. PubMed ID: 16988366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1.
    Chabaud M; de Carvalho-Niebel F; Barker DG
    Plant Cell Rep; 2003 Aug; 22(1):46-51. PubMed ID: 12827434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wheat (Triticum aestivum L.).
    Wan Y; Layton J
    Methods Mol Biol; 2006; 343():245-53. PubMed ID: 16988349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient production of transgenic melon via Agrobacterium-mediated transformation.
    Bezirganoglu I; Hwang SY; Shaw JF; Fang TJ
    Genet Mol Res; 2014 Apr; 13(2):3218-27. PubMed ID: 24841654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures.
    Goossens J; De Geyter N; Walton A; Eeckhout D; Mertens J; Pollier J; Fiallos-Jurado J; De Keyser A; De Clercq R; Van Leene J; Gevaert K; De Jaeger G; Goormachtig S; Goossens A
    Plant J; 2016 Nov; 88(3):476-489. PubMed ID: 27377668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rye (Secale cereale L.).
    Altpeter F
    Methods Mol Biol; 2006; 343():223-31. PubMed ID: 16988347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos.
    Gurel S; Gurel E; Miller TI; Lemaux PG
    Methods Mol Biol; 2012; 847():109-22. PubMed ID: 22351003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula.
    Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F
    Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.