These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1698836)

  • 1. Expression of surface glycoproteins early in leech neural development.
    McGlade-McCulloh E; Muller KJ; Zipser B
    J Comp Neurol; 1990 Sep; 299(1):123-31. PubMed ID: 1698836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific pathway selection by the early projections of individual peripheral sensory neurons in the embryonic medicinal leech.
    Jellies J; Johansen K; Johansen J
    J Neurobiol; 1994 Oct; 25(10):1187-99. PubMed ID: 7815053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mannose-specific recognition mediates two aspects of synaptic growth of leech sensory afferents: collateral branching and proliferation of synaptic vesicle clusters.
    Tai MH; Zipser B
    Dev Biol; 1998 Sep; 201(2):154-66. PubMed ID: 9740656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the inhibition of axonal defasciculation and arborization mediated by carbohydrate markers in the embryonic leech.
    Song J; Zipser B
    Dev Biol; 1995 Apr; 168(2):319-31. PubMed ID: 7729572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Netrin signal is produced in leech embryos by segmentally iterated sets of central neurons and longitudinal muscle cells.
    Aisemberg GO; Kuhn J; Macagno ER
    Dev Genes Evol; 2001 Dec; 211(12):589-96. PubMed ID: 11819116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial processes, identified through their glial-specific 130 kD surface glycoprotein, are juxtaposed to sites of neurogenesis in the leech germinal plate.
    Cole RN; Morell RJ; Zipser B
    Glia; 1989; 2(6):446-57. PubMed ID: 2531725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental regulation of a glycolipid epitope on actively extending growth cones and central and peripheral projections in the medicinal leech.
    Jellies J; Kopp DM; Geisert EE
    Dev Biol; 1993 Oct; 159(2):691-705. PubMed ID: 7691666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of identified glia that ensheathe axons in Hirudo medicinalis.
    Morrissey AM; McGlade-McCulloh E
    J Neurosci Res; 1988; 21(2-4):513-20. PubMed ID: 3216434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibody identifies a 63,000 dalton antigen found in all central neuronal cell bodies but in only a subset of axons in the leech.
    McKay R; Johansen J; Hockfield S
    J Comp Neurol; 1984 Jul; 226(3):448-55. PubMed ID: 6430974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate epitopes involved in neural cell recognition are conserved between vertebrates and leech.
    Bajt ML; Schmitz B; Schachner M; Zipser B
    J Neurosci Res; 1990 Nov; 27(3):276-85. PubMed ID: 1711124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defasciculation as a neuronal pathfinding strategy: involvement of a specific glycoprotein.
    Zipser B; Morell R; Bajt ML
    Neuron; 1989 Nov; 3(5):621-30. PubMed ID: 2642013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ hybridization reveals transient laminin B-chain expression by individual glial and muscle cells in embryonic leech central nervous system.
    Luebke AE; Dickerson IM; Muller KJ
    J Neurobiol; 1995 May; 27(1):1-14. PubMed ID: 7643070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro studies of growth cone behavior support a role for fasciculation mediated by cell adhesion molecules in sensory axon guidance during development.
    Honig MG; Petersen GG; Rutishauser US; Camilli SJ
    Dev Biol; 1998 Dec; 204(2):317-26. PubMed ID: 9882473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic conservation of the cell-type-specific Lan3-2 glycoepitope in Caenorhabditis elegans.
    Vansteenhouse HC; Horton ZA; O'Hagan R; Tai MH; Zipser B
    Dev Genes Evol; 2010 Sep; 220(3-4):77-87. PubMed ID: 20563596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tract formation and axon fasciculation of molecularly distinct peripheral neuron subpopulations during leech embryogenesis.
    Johansen KM; Kopp DM; Jellies J; Johansen J
    Neuron; 1992 Mar; 8(3):559-72. PubMed ID: 1550678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential steps in synaptic targeting of sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs.
    Tai MH; Zipser B
    Dev Biol; 1999 Oct; 214(2):258-76. PubMed ID: 10525333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antennapedia-class homebox genes define diverse neuronal sets in the embryonic CNS of the leech.
    Aisemberg GO; Wysocka-Diller J; Wong VY; Macagno ER
    J Neurobiol; 1993 Oct; 24(10):1423-32. PubMed ID: 7901325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The segmentation of the leech nervous system is prefigured by myogenic cells at the embryonic midline expressing a muscle-specific matrix protein.
    Thorey IS; Zipser B
    J Neurosci; 1991 Jun; 11(6):1786-99. PubMed ID: 1710659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mannose-specific recognition mediates the defasciculation of axons in the leech CNS.
    Zipser B; Cole RN
    J Neurosci; 1991 Nov; 11(11):3471-80. PubMed ID: 1658251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryonic development of the chick primary trigeminal sensory-motor complex.
    Covell DA; Noden DM
    J Comp Neurol; 1989 Aug; 286(4):488-503. PubMed ID: 2778103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.