BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16989284)

  • 1. Nitric oxide mediates the fungal elicitor-induced puerarin biosynthesis in Pueraria thomsonii Benth. suspension cells through a salicylic acid (SA)-dependent and a jasmonic acid (JA)-dependent signal pathway.
    Xu M; Dong J; Zhu M
    Sci China C Life Sci; 2006 Aug; 49(4):379-89. PubMed ID: 16989284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.
    Xu M; Dong J; Wang H; Huang L
    Plant Cell Environ; 2009 Aug; 32(8):960-7. PubMed ID: 19389054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway.
    Xu MJ; Dong JF; Zhu MY
    Plant Physiol; 2005 Oct; 139(2):991-8. PubMed ID: 16169960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets.
    Ren CG; Dai CC
    BMC Plant Biol; 2012 Aug; 12():128. PubMed ID: 22856333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid.
    Kumar D; Klessig DF
    Mol Plant Microbe Interact; 2000 Mar; 13(3):347-51. PubMed ID: 10707361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of abscisic acid in ozone-induced puerarin production of Pueraria thomsnii Benth. suspension cell cultures.
    Sun L; Su H; Zhu Y; Xu M
    Plant Cell Rep; 2012 Jan; 31(1):179-85. PubMed ID: 21947422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack.
    Costarelli A; Bianchet C; Ederli L; Salerno G; Piersanti S; Rebora M; Pasqualini S
    Plant Signal Behav; 2020; 15(1):1704517. PubMed ID: 31852340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide mediates hypocrellin accumulation induced by fungal elicitor in submerged cultures of Shiraia bambusicola.
    Du W; Liang J; Han Y; Yu J; Liang Z
    Biotechnol Lett; 2015 Jan; 37(1):153-9. PubMed ID: 25214226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Ethylene Signaling Induced by Endophytic Fungus Gilmaniella sp. AL12 Mediating Sesquiterpenoids Biosynthesis in Atractylodes lancea.
    Yuan J; Sun K; Deng-Wang MY; Dai CC
    Front Plant Sci; 2016; 7():361. PubMed ID: 27047528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis.
    Lemarié S; Robert-Seilaniantz A; Lariagon C; Lemoine J; Marnet N; Jubault M; Manzanares-Dauleux MJ; Gravot A
    Plant Cell Physiol; 2015 Nov; 56(11):2158-68. PubMed ID: 26363358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana.
    Huang X; Stettmaier K; Michel C; Hutzler P; Mueller MJ; Durner J
    Planta; 2004 Apr; 218(6):938-46. PubMed ID: 14716563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of defective cross talk in ssi2 mutants: role of salicylic acid, jasmonic acid, and fatty acids in SSI2-mediated signaling.
    Kachroo P; Kachroo A; Lapchyk L; Hildebrand D; Klessig DF
    Mol Plant Microbe Interact; 2003 Nov; 16(11):1022-9. PubMed ID: 14601670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide mediates the fungal-elicitor-enhanced biosynthesis of antioxidant polyphenols in submerged cultures of Inonotus obliquus.
    Zheng W; Miao K; Zhang Y; Pan S; Zhang M; Jiang H
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3440-3448. PubMed ID: 19556296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan Oligosaccharide Induces Resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by Activating Both Salicylic Acid- and Jasmonic Acid-Mediated Pathways.
    Jia X; Zeng H; Wang W; Zhang F; Yin H
    Mol Plant Microbe Interact; 2018 Dec; 31(12):1271-1279. PubMed ID: 29869942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling.
    Liu Y; Li M; Li T; Chen Y; Zhang L; Zhao G; Zhuang J; Zhao W; Gao L; Xia T
    Plant Sci; 2020 Nov; 300():110635. PubMed ID: 33180713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.
    Ji Y; Liu J; Xing D
    J Exp Bot; 2016 Sep; 67(17):5233-45. PubMed ID: 27440938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.
    Zhu F; Xi DH; Yuan S; Xu F; Zhang DW; Lin HH
    Mol Plant Microbe Interact; 2014 Jun; 27(6):567-77. PubMed ID: 24450774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.
    Halim VA; Altmann S; Ellinger D; Eschen-Lippold L; Miersch O; Scheel D; Rosahl S
    Plant J; 2009 Jan; 57(2):230-42. PubMed ID: 18801014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk.
    Lemos M; Xiao Y; Bjornson M; Wang JZ; Hicks D; Souza Ad; Wang CQ; Yang P; Ma S; Dinesh-Kumar S; Dehesh K
    J Exp Bot; 2016 Mar; 67(5):1557-66. PubMed ID: 26733689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol.
    Spoel SH; Koornneef A; Claessens SM; Korzelius JP; Van Pelt JA; Mueller MJ; Buchala AJ; Métraux JP; Brown R; Kazan K; Van Loon LC; Dong X; Pieterse CM
    Plant Cell; 2003 Mar; 15(3):760-70. PubMed ID: 12615947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.