BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16989323)

  • 1. Overexpression of celB gene coding for beta-glucosidase from Pyrococcus furiosus using a baculovirus expression vector system in silkworm, Bombyx mori.
    Lin X; Zhang W; Chen Y; Yao B; Zhang ZF
    Z Naturforsch C J Biosci; 2006; 61(7-8):595-600. PubMed ID: 16989323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A digestive beta-glucosidase from the silkworm, Bombyx mori: cDNA cloning, expression and enzymatic characterization.
    Byeon GM; Lee KS; Gui ZZ; Kim I; Kang PD; Lee SM; Sohn HD; Jin BR
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Aug; 141(4):418-27. PubMed ID: 15970451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus.
    Kaper T; Lebbink JH; Pouwels J; Kopp J; Schulz GE; van der Oost J; de Vos WM
    Biochemistry; 2000 May; 39(17):4963-70. PubMed ID: 10819960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving low-temperature catalysis in the hyperthermostable Pyrococcus furiosus beta-glucosidase CelB by directed evolution.
    Lebbink JH; Kaper T; Bron P; van der Oost J; de Vos WM
    Biochemistry; 2000 Apr; 39(13):3656-65. PubMed ID: 10736164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers.
    Voorhorst WG; Gueguen Y; Geerling AC; Schut G; Dahlke I; Thomm M; van der Oost J; de Vos WM
    J Bacteriol; 1999 Jun; 181(12):3777-83. PubMed ID: 10368153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced heat tolerance in transgenic silkworm via overexpression of Pyrococcus furiosus superoxide reductase.
    Jiang L; Huang C; Wang B; Guo H; Sun Q; Xia F; Xu G; Xia Q
    Insect Biochem Mol Biol; 2018 Jan; 92():40-44. PubMed ID: 29170068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus.
    Hansson T; Kaper T; van Der Oost J; de Vos WM; Adlercreutz P
    Biotechnol Bioeng; 2001 May; 73(3):203-10. PubMed ID: 11257602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli.
    Voorhorst WG; Eggen RI; Luesink EJ; de Vos WM
    J Bacteriol; 1995 Dec; 177(24):7105-11. PubMed ID: 8522516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an extremely thermostable but cold-adaptive β-galactosidase from the hyperthermophilic archaeon Pyrococcus furiosus for use as a recombinant aggregation for batch lactose degradation at high temperature.
    Dong Q; Yan X; Zheng M; Yang Z
    J Biosci Bioeng; 2014 Jun; 117(6):706-10. PubMed ID: 24462527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases.
    Sharma P; Kaila P; Guptasarma P
    FEBS J; 2016 Dec; 283(23):4340-4356. PubMed ID: 27749025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus.
    Li B; Wang Z; Li S; Donelan W; Wang X; Cui T; Tang D
    BMC Biotechnol; 2013 Sep; 13():73. PubMed ID: 24053641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus.
    Oh HJ; Shin KC; Oh DK
    Biotechnol Lett; 2014 Jan; 36(1):113-9. PubMed ID: 24078126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrapment in E. coli improves the operational stability of recombinant beta-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery.
    Kamrat T; Nidetzky B
    J Biotechnol; 2007 Mar; 129(1):69-76. PubMed ID: 17212972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus.
    Yeom SJ; Kim BN; Kim YS; Oh DK
    J Agric Food Chem; 2012 Feb; 60(6):1535-41. PubMed ID: 22251001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant production of hyperthermostable CelB from Pyrococcus furiosus in Lactobacillus sp.
    Böhmer N; Lutz-Wahl S; Fischer L
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):903-12. PubMed ID: 22714098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of an archaeal protein in yeast: secretion bottleneck at the ER.
    Smith JD; Robinson AS
    Biotechnol Bioeng; 2002 Sep; 79(7):713-23. PubMed ID: 12209794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal secretion of thermostable Beta-glucosidase in Bacillus subtilis by signal peptide optimization.
    Khadye VS; Sawant S; Shaikh K; Srivastava R; Chandrayan S; Odaneth AA
    Protein Expr Purif; 2021 Jun; 182():105843. PubMed ID: 33631310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei.
    Dabrowski S; Kur J
    Protein Expr Purif; 1998 Oct; 14(1):131-8. PubMed ID: 9758761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient method for the generation of a recombinant Bombyx mori nuclear-polyhedrosis-virus Bacmid and large-scale expression of foreign proteins in silkworm (B. mori) larvae.
    Yao LG; Liu ZC; Zhang XM; Kan YC; Zhou JJ
    Biotechnol Appl Biochem; 2007 Sep; 48(Pt 1):45-53. PubMed ID: 17428194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta-Glucosidase CelB from Pyrococcus furiosus: production by Escherichia coli, purification, and in vitro evolution.
    Lebbink JH; Kaper T; Kengen SW; van der Oost J; de Vos WM
    Methods Enzymol; 2001; 330():364-79. PubMed ID: 11210515
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.