BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16989656)

  • 1. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Ando A; Nakamura T; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Shima J; Ando A; Takagi H
    Yeast; 2008 Mar; 25(3):179-90. PubMed ID: 18224659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae.
    Ando A; Tanaka F; Murata Y; Takagi H; Shima J
    FEMS Yeast Res; 2006 Mar; 6(2):249-67. PubMed ID: 16487347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J; Takagi H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae.
    Nakamura T; Ando A; Takagi H; Shima J
    Biochem Biophys Res Commun; 2007 Feb; 353(2):293-8. PubMed ID: 17187761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing.
    Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology.
    Izawa S; Ikeda K; Maeta K; Inoue Y
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of rns4/vps32 mutation in the RNase T1 expression-sensitive strain of Saccharomyces cerevisiae: Evidence for altered ambient response resulting in transportation of the secretory protein to vacuoles.
    Unno K; Juvvadi PR; Nakajima H; Shirahige K; Kitamoto K
    FEMS Yeast Res; 2005 Jun; 5(9):801-12. PubMed ID: 15925308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae.
    Momose Y; Matsumoto R; Maruyama A; Yamaoka M
    Cryobiology; 2010 Jun; 60(3):245-61. PubMed ID: 20067782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.
    Takahashi S; Ando A; Takagi H; Shima J
    Appl Environ Microbiol; 2009 Nov; 75(21):6706-11. PubMed ID: 19749072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides.
    Izawa S; Ikeda K; Takahashi N; Inoue Y
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes.
    Thorpe GW; Fong CS; Alic N; Higgins VJ; Dawes IW
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6564-9. PubMed ID: 15087496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition.
    Nakagawa Y; Seita J; Komiyama S; Yamamura H; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2013; 77(2):224-8. PubMed ID: 23391901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols.
    Fujita K; Matsuyama A; Kobayashi Y; Iwahashi H
    FEMS Yeast Res; 2006 Aug; 6(5):744-50. PubMed ID: 16879425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection.
    Okada N; Ogawa J; Shima J
    FEMS Yeast Res; 2014 May; 14(3):425-34. PubMed ID: 24410772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS; Moon HY; Yun HS; Jin I
    J Microbiol; 2006 Oct; 44(5):492-501. PubMed ID: 17082742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.