These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 16989658)
21. Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. Nunoura T; Takai K FEMS Microbiol Ecol; 2009 Mar; 67(3):351-70. PubMed ID: 19159423 [TBL] [Abstract][Full Text] [Related]
22. [Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide stream in the North Caucasus]. Chernousova EIu; Akimov VN; Gridneva EV; Dubinina GA; Grabovich MIu Mikrobiologiia; 2008; 77(2):255-60. PubMed ID: 18522328 [TBL] [Abstract][Full Text] [Related]
23. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Ruehland C; Dubilier N Environ Microbiol; 2010 Aug; 12(8):2312-26. PubMed ID: 21966922 [TBL] [Abstract][Full Text] [Related]
24. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). Vetriani C; Voordeckers JW; Crespo-Medina M; O'Brien CE; Giovannelli D; Lutz RA ISME J; 2014 Jul; 8(7):1510-21. PubMed ID: 24430487 [TBL] [Abstract][Full Text] [Related]
25. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Grünke S; Felden J; Lichtschlag A; Girnth AC; De Beer D; Wenzhöfer F; Boetius A Geobiology; 2011 Jul; 9(4):330-48. PubMed ID: 21535364 [TBL] [Abstract][Full Text] [Related]
26. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). Nercessian O; Reysenbach AL; Prieur D; Jeanthon C Environ Microbiol; 2003 Jun; 5(6):492-502. PubMed ID: 12755716 [TBL] [Abstract][Full Text] [Related]
27. Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. Burgaud G; Arzur D; Durand L; Cambon-Bonavita MA; Barbier G FEMS Microbiol Ecol; 2010 Jul; 73(1):121-33. PubMed ID: 20455940 [TBL] [Abstract][Full Text] [Related]
28. Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Slobodkina GB; Kolganova TV; Tourova TP; Kostrikina NA; Jeanthon C; Bonch-Osmolovskaya EA; Slobodkin AI Int J Syst Evol Microbiol; 2008 Apr; 58(Pt 4):852-5. PubMed ID: 18398181 [TBL] [Abstract][Full Text] [Related]
29. Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Elsaied H; Stokes HW; Nakamura T; Kitamura K; Fuse H; Maruyama A Environ Microbiol; 2007 Sep; 9(9):2298-312. PubMed ID: 17686026 [TBL] [Abstract][Full Text] [Related]
30. Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Corre E; Reysenbach AL; Prieur D FEMS Microbiol Lett; 2001 Dec; 205(2):329-35. PubMed ID: 11750823 [TBL] [Abstract][Full Text] [Related]
31. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. López-García P; Duperron S; Philippot P; Foriel J; Susini J; Moreira D Environ Microbiol; 2003 Oct; 5(10):961-76. PubMed ID: 14510850 [TBL] [Abstract][Full Text] [Related]
32. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Campbell BJ; Jeanthon C; Kostka JE; Luther GW; Cary SC Appl Environ Microbiol; 2001 Oct; 67(10):4566-72. PubMed ID: 11571157 [TBL] [Abstract][Full Text] [Related]
33. Abundance and diversity of microbial life in ocean crust. Santelli CM; Orcutt BN; Banning E; Bach W; Moyer CL; Sogin ML; Staudigel H; Edwards KJ Nature; 2008 May; 453(7195):653-6. PubMed ID: 18509444 [TBL] [Abstract][Full Text] [Related]
34. Microbial population structures in the deep marine biosphere. Huber JA; Mark Welch DB; Morrison HG; Huse SM; Neal PR; Butterfield DA; Sogin ML Science; 2007 Oct; 318(5847):97-100. PubMed ID: 17916733 [TBL] [Abstract][Full Text] [Related]
35. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Pham VD; Konstantinidis KT; Palden T; DeLong EF Environ Microbiol; 2008 Sep; 10(9):2313-30. PubMed ID: 18494796 [TBL] [Abstract][Full Text] [Related]
36. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. Byrne N; Strous M; Crépeau V; Kartal B; Birrien JL; Schmid M; Lesongeur F; Schouten S; Jaeschke A; Jetten M; Prieur D; Godfroy A ISME J; 2009 Jan; 3(1):117-23. PubMed ID: 18670398 [TBL] [Abstract][Full Text] [Related]
37. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. Macalady JL; Dattagupta S; Schaperdoth I; Jones DS; Druschel GK; Eastman D ISME J; 2008 Jun; 2(6):590-601. PubMed ID: 18356823 [TBL] [Abstract][Full Text] [Related]
38. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Pagé A; Tivey MK; Stakes DS; Reysenbach AL Environ Microbiol; 2008 Apr; 10(4):874-84. PubMed ID: 18201197 [TBL] [Abstract][Full Text] [Related]
39. Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Suzuki Y; Sasaki T; Suzuki M; Nogi Y; Miwa T; Takai K; Nealson KH; Horikoshi K Appl Environ Microbiol; 2005 Sep; 71(9):5440-50. PubMed ID: 16151136 [TBL] [Abstract][Full Text] [Related]
40. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. Meyer JL; Huber JA ISME J; 2014 Apr; 8(4):867-80. PubMed ID: 24257443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]