These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 16989720)

  • 21. Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications.
    Zhang C; Li H; Wang Y; Liu W; Zhang Q; Zhang T; Zhang X; Han B; Zhou G
    J Hepatol; 2010 Nov; 53(5):889-95. PubMed ID: 20675009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms.
    Haag T; Richter AM; Schneider MB; Jiménez AP; Dammann RH
    BMC Cancer; 2016 Feb; 16():49. PubMed ID: 26833217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CTCF mediates the TERT enhancer-promoter interactions in lung cancer cells: identification of a novel enhancer region involved in the regulation of TERT gene.
    Eldholm V; Haugen A; Zienolddiny S
    Int J Cancer; 2014 May; 134(10):2305-13. PubMed ID: 24174344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation.
    Chen K; Hu J; Moore DL; Liu R; Kessans SA; Breslin K; Lucet IS; Keniry A; Leong HS; Parish CL; Hilton DJ; Lemmers RJ; van der Maarel SM; Czabotar PE; Dobson RC; Ritchie ME; Kay GF; Murphy JM; Blewitt ME
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3535-44. PubMed ID: 26091879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insulation of tumor suppressor genes by the nuclear factor CTCF.
    Recillas-Targa F; de la Rosa-Velázquez IA; Soto-Reyes E
    Biochem Cell Biol; 2011 Oct; 89(5):479-88. PubMed ID: 21846316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells.
    Hong JA; Kang Y; Abdullaev Z; Flanagan PT; Pack SD; Fischette MR; Adnani MT; Loukinov DI; Vatolin S; Risinger JI; Custer M; Chen GA; Zhao M; Nguyen DM; Barrett JC; Lobanenkov VV; Schrump DS
    Cancer Res; 2005 Sep; 65(17):7763-74. PubMed ID: 16140944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch.
    Li T; Vu TH; Ulaner GA; Littman E; Ling JQ; Chen HL; Hu JF; Behr B; Giudice L; Hoffman AR
    Mol Hum Reprod; 2005 Sep; 11(9):631-40. PubMed ID: 16219628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pan-cancer analysis of somatic mutations and epigenetic alterations in insulated neighbourhood boundaries.
    Pinoli P; Stamoulakatou E; Nguyen AP; Rodríguez Martínez M; Ceri S
    PLoS One; 2020; 15(1):e0227180. PubMed ID: 31945090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylation.
    D'Alessio AC; Szyf M
    Biochem Cell Biol; 2006 Aug; 84(4):463-76. PubMed ID: 16936820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program.
    Navarro P; Page DR; Avner P; Rougeulle C
    Genes Dev; 2006 Oct; 20(20):2787-92. PubMed ID: 17043308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer.
    Klenova EM; Morse HC; Ohlsson R; Lobanenkov VV
    Semin Cancer Biol; 2002 Oct; 12(5):399-414. PubMed ID: 12191639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation.
    Pugacheva EM; Tiwari VK; Abdullaev Z; Vostrov AA; Flanagan PT; Quitschke WW; Loukinov DI; Ohlsson R; Lobanenkov VV
    Hum Mol Genet; 2005 Apr; 14(7):953-65. PubMed ID: 15731119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in expression of imprinted genes from the H19/IGF2 loci in a multigenerational model of intrauterine growth restriction (IUGR).
    Gonzalez-Rodriguez P; Cantu J; O'Neil D; Seferovic MD; Goodspeed DM; Suter MA; Aagaard KM
    Am J Obstet Gynecol; 2016 May; 214(5):625.e1-625.e11. PubMed ID: 26880735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular biology. Genetic events that shape the cancer epigenome.
    Ryan RJ; Bernstein BE
    Science; 2012 Jun; 336(6088):1513-4. PubMed ID: 22723401
    [No Abstract]   [Full Text] [Related]  

  • 35. Disruption of the 3D cancer genome blueprint.
    Achinger-Kawecka J; Clark SJ
    Epigenomics; 2017 Jan; 9(1):47-55. PubMed ID: 27936932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CTCF as a regulator of alternative splicing: new tricks for an old player.
    Alharbi AB; Schmitz U; Bailey CG; Rasko JEJ
    Nucleic Acids Res; 2021 Aug; 49(14):7825-7838. PubMed ID: 34181707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic changes in solid and hematopoietic tumors.
    Toyota M; Issa JP
    Semin Oncol; 2005 Oct; 32(5):521-30. PubMed ID: 16210093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cancer and epigenesis: a developmental perspective.
    Oligny LL
    Adv Pediatr; 2003; 50():59-80. PubMed ID: 14626483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methyl-CpG-binding proteins in cancer: blaming the DNA methylation messenger.
    Ballestar E; Esteller M
    Biochem Cell Biol; 2005 Jun; 83(3):374-84. PubMed ID: 15959563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breaching the boundaries that safeguard against repression.
    Tiwari VK; Baylin SB
    Mol Cell; 2009 May; 34(4):395-7. PubMed ID: 19481516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.