These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16989881)

  • 41. Research and Fabrication of High-Frequency Broadband and Omnidirectional Transmitting Transducer.
    Hao S; Wang H; Zhong C; Wang L; Zhang H
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30029530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study.
    Bybi A; Grondel S; Assaad J; Hladky-Hennion AC; Granger C; Rguiti M
    Ultrasonics; 2013 Aug; 53(6):1135-40. PubMed ID: 23537919
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The design, fabrication, and measured acoustic performance of a 1-3 piezoelectric composite Navy calibration standard transducer.
    Benjamin KC; Petrie S
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1973-8. PubMed ID: 11386551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a low-frequency high purity A0 mode transducer for SHM applications.
    Clarke T; Simonetti F; Rohklin S; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1457-68. PubMed ID: 19574156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducers.
    Orr LA; Mulholland AJ; O'Leary RL; Parr A; Pethrick RA; Hayward G
    Ultrasonics; 2007 Dec; 47(1-4):130-7. PubMed ID: 17980896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design and Fabrication of Annular-Array Ultrasound Transducer Based (K, Na) NbO
    Zhang Z; An X; Guo S; Gong X; Ke Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):38-45. PubMed ID: 37556343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of composite transducer designing in high frequency applications.
    Wu H; Lin J; Gao H; Shui Y; Xue Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1610-4. PubMed ID: 18238708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures.
    Kirk KJ; McNab A; Cochram A; Hall I; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):311-9. PubMed ID: 18238427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Doping effects of CuO additives on the properties of low-temperature-sintered PMnN-PZT-based piezoelectric ceramics and their applications on surface acoustic wave devices.
    Tsai CC; Chu SY; Lu CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):660-8. PubMed ID: 19411224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Broadband multimode baffled piezoelectric cylindrical shell transducers.
    Oishi T; Aronov B; Brown DA
    J Acoust Soc Am; 2007 Jun; 121(6):3465-71. PubMed ID: 17552698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Grating lobe reduction in transducer arrays through structural filtering of supercritical plates.
    Anderson BE; Hughes WJ; Hambric SA
    J Acoust Soc Am; 2009 Aug; 126(2):612-9. PubMed ID: 19640026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer.
    Cuthbertson BD; Tobar ME; Ivanov EN; Blair DG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1303-13. PubMed ID: 18244293
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bending Vibration Characteristics of a Novel Piezoelectric Composite Trilaminar Vibrator.
    Lv N; Zhong C; Wang J; Wang L
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. End-element anomalies in medical ultrasonic piezo-composite arrays.
    Beers C; Smith NB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2509-18. PubMed ID: 19049931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control.
    Loveday PW; Rogers CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1211-5. PubMed ID: 18244281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Miniature piezoelectric conical transducer: fabrication, evaluation and application.
    Lee YC; Lin Z
    Ultrasonics; 2006 Dec; 44 Suppl 1():e693-7. PubMed ID: 16831453
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Guided wave arrays for high resolution inspection.
    Velichko A; Wilcox PD
    J Acoust Soc Am; 2008 Jan; 123(1):186-96. PubMed ID: 18177150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In(1∕2)Nb(1∕2))-Pb(Mg(1∕3)Nb(2∕3))-PbTiO3 single crystal∕epoxy 1-3 composite.
    Zhou D; Cheung KF; Lam KH; Chen Y; Chiu YC; Dai J; Chan HL; Luo H
    Rev Sci Instrum; 2011 May; 82(5):055110. PubMed ID: 21639541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of a new wide-band transducer with piezoelectric layered ring.
    Yuan Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):39-42. PubMed ID: 18263116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.