BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16989885)

  • 1. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA; Arimoto R; Marshall GR; Kisselev OG
    Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
    Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE; Kraft PC; Dratz EA
    Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR analysis of rhodopsin-transducin interactions.
    Ridge KD; Marino JP; Ngo T; Ramon E; Brabazon DM; Abdulaev NG
    Vision Res; 2006 Dec; 46(27):4482-92. PubMed ID: 16979691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The receptor-bound "empty pocket" state of the heterotrimeric G-protein alpha-subunit is conformationally dynamic.
    Abdulaev NG; Ngo T; Ramon E; Brabazon DM; Marino JP; Ridge KD
    Biochemistry; 2006 Oct; 45(43):12986-97. PubMed ID: 17059215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin controls a conformational switch on the transducin gamma subunit.
    Kisselev OG; Downs MA
    Structure; 2003 Apr; 11(4):367-73. PubMed ID: 12679015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes.
    Morizumi T; Imai H; Shichida Y
    Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit.
    Artemyev NO
    Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transducin activation by molecular species of rhodopsin other than metarhodopsin II.
    Okada D; Nakai T; Ikai A
    Photochem Photobiol; 1989 Feb; 49(2):197-203. PubMed ID: 2540499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the mechanism of rhodopsin-catalyzed transducin activation.
    Natochin M; Moussaif M; Artemyev NO
    J Neurochem; 2001 Apr; 77(1):202-10. PubMed ID: 11279276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors.
    Nair KS; Balasubramanian N; Slepak VZ
    Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin.
    Yoshida T; Willardson BM; Wilkins JF; Jensen GJ; Thornton BD; Bitensky MW
    J Biol Chem; 1994 Sep; 269(39):24050-7. PubMed ID: 7929057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular basis of GTP-binding protein interaction with receptors.
    Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH
    Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits.
    Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP
    J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.