These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 16989885)
1. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin. Downs MA; Arimoto R; Marshall GR; Kisselev OG Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885 [TBL] [Abstract][Full Text] [Related]
2. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit. Barren B; Natochin M; Artemyev NO Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989 [TBL] [Abstract][Full Text] [Related]
3. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis. Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013 [TBL] [Abstract][Full Text] [Related]
4. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex. Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510 [TBL] [Abstract][Full Text] [Related]
5. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling. Angel TE; Kraft PC; Dratz EA Vision Res; 2006 Dec; 46(27):4547-55. PubMed ID: 17014882 [TBL] [Abstract][Full Text] [Related]
6. NMR analysis of rhodopsin-transducin interactions. Ridge KD; Marino JP; Ngo T; Ramon E; Brabazon DM; Abdulaev NG Vision Res; 2006 Dec; 46(27):4482-92. PubMed ID: 16979691 [TBL] [Abstract][Full Text] [Related]
7. Rhodopsin-interacting surface of the transducin gamma subunit. Kisselev OG; Downs MA Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973 [TBL] [Abstract][Full Text] [Related]
8. The receptor-bound "empty pocket" state of the heterotrimeric G-protein alpha-subunit is conformationally dynamic. Abdulaev NG; Ngo T; Ramon E; Brabazon DM; Marino JP; Ridge KD Biochemistry; 2006 Oct; 45(43):12986-97. PubMed ID: 17059215 [TBL] [Abstract][Full Text] [Related]
9. Rhodopsin controls a conformational switch on the transducin gamma subunit. Kisselev OG; Downs MA Structure; 2003 Apr; 11(4):367-73. PubMed ID: 12679015 [TBL] [Abstract][Full Text] [Related]
10. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes. Morizumi T; Imai H; Shichida Y Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166 [TBL] [Abstract][Full Text] [Related]
11. Binding of transducin to light-activated rhodopsin prevents transducin interaction with the rod cGMP phosphodiesterase gamma-subunit. Artemyev NO Biochemistry; 1997 Apr; 36(14):4188-93. PubMed ID: 9100013 [TBL] [Abstract][Full Text] [Related]
12. Transducin activation by molecular species of rhodopsin other than metarhodopsin II. Okada D; Nakai T; Ikai A Photochem Photobiol; 1989 Feb; 49(2):197-203. PubMed ID: 2540499 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue. Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583 [TBL] [Abstract][Full Text] [Related]
14. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin. Brabazon DM; Abdulaev NG; Marino JP; Ridge KD Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157 [TBL] [Abstract][Full Text] [Related]
15. Probing the mechanism of rhodopsin-catalyzed transducin activation. Natochin M; Moussaif M; Artemyev NO J Neurochem; 2001 Apr; 77(1):202-10. PubMed ID: 11279276 [TBL] [Abstract][Full Text] [Related]
16. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Nair KS; Balasubramanian N; Slepak VZ Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295 [TBL] [Abstract][Full Text] [Related]
17. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769 [TBL] [Abstract][Full Text] [Related]
18. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. Yoshida T; Willardson BM; Wilkins JF; Jensen GJ; Thornton BD; Bitensky MW J Biol Chem; 1994 Sep; 269(39):24050-7. PubMed ID: 7929057 [TBL] [Abstract][Full Text] [Related]
19. The molecular basis of GTP-binding protein interaction with receptors. Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961 [TBL] [Abstract][Full Text] [Related]
20. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]