These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16990011)

  • 1. A new, transportable ergometer for the measurement of musculotendinous stiffness during wrist flexion.
    Stephan E; Delanaud S; Bisch C; Libert JP; Telliez F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):160-8. PubMed ID: 16990011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reproducibility study on musculotendinous stiffness quantification, using a new transportable ankle ergometer device.
    Lambertz D; Paiva MG; Marinho SM; Aragão RS; Barros KM; Manhães-de-Castro R; Khider N; Canon F
    J Biomech; 2008 Nov; 41(15):3270-3. PubMed ID: 18848701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of an objective device for assessing circumductive wrist motion.
    Franko OI; Lal S; Pauyo T; Alexander M; Zurakowski D; Day C
    J Hand Surg Am; 2008 Oct; 33(8):1293-300. PubMed ID: 18929191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic response to manual passive stretch of the hemiplegic wrist: accuracy, reliability, and correlation with clinical spasticity assessment and function.
    Sorinola IO; White CM; Rushton DN; Newham DJ
    Neurorehabil Neural Repair; 2009; 23(3):287-94. PubMed ID: 19050174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle elastic properties during wrist flexion and extension in healthy sedentary subjects and volley-ball players.
    Cornu C; Maïsetti O; Ledoux I
    Int J Sports Med; 2003 May; 24(4):277-84. PubMed ID: 12784170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a controlled-release ergometer for the measurement of musculotendinous stiffness of the knee flexors.
    Dugan EL; Newton RU; Doyle TL; Humphries B
    J Strength Cond Res; 2005 Nov; 19(4):959-63. PubMed ID: 16287363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo estimation of the short-range stiffness of cross-bridges from joint rotation.
    van Eesbeek S; de Groot JH; van der Helm FC; de Vlugt E
    J Biomech; 2010 Sep; 43(13):2539-47. PubMed ID: 20541761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of wrist position and contraction on wrist flexors H-reflex, and its functional implications.
    Chen FF; Lo SF; Meng NH; Lin CL; Chou LW
    J Electromyogr Kinesiol; 2006 Oct; 16(5):440-7. PubMed ID: 16289712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrist circumduction reduced by finger constraints.
    Gehrmann SV; Kaufmann RA; Li ZM
    J Hand Surg Am; 2008 Oct; 33(8):1287-92. PubMed ID: 18929190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of static progressive stretch for the treatment of wrist stiffness.
    McGrath MS; Ulrich SD; Bonutti PM; Smith JM; Seyler TM; Mont MA
    J Hand Surg Am; 2008 Nov; 33(9):1498-504. PubMed ID: 18984330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.
    Claiborne TL; Timmons MK; Pincivero DM
    J Electromyogr Kinesiol; 2009 Oct; 19(5):e345-52. PubMed ID: 18845450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of biomechanical variables during wheelchair ergometry testing.
    Finley MA; Rodgers MM; Rasch EK; McQuade KJ; Keyser RE
    J Rehabil Res Dev; 2002; 39(1):73-81. PubMed ID: 11926329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of wrist flexion and extension torques in different forearm positions.
    Yoshii Y; Yuine H; Kazuki O; Tung WL; Ishii T
    Biomed Eng Online; 2015 Dec; 14():115. PubMed ID: 26830913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and reliability of three different techniques for manual goniometry for wrist motion: a cadaveric study.
    Carter TI; Pansy B; Wolff AL; Hillstrom HJ; Backus SI; Lenhoff M; Wolfe SW
    J Hand Surg Am; 2009 Oct; 34(8):1422-8. PubMed ID: 19703734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agreement between a frequency-weighted filter for continuous biomechanical measurements of repetitive wrist flexion against a load and published psychophysical data.
    Lin ML; Radwin RG
    Ergonomics; 1998 Apr; 41(4):459-75. PubMed ID: 9557587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of an electrogoniometric wrist alignment device.
    Ugbolue UC; Nicol AC; Maclean J
    Proc Inst Mech Eng H; 2008 Jul; 222(5):637-46. PubMed ID: 18756683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinometric properties of a clinical spasticity measurement tool.
    Voerman GE; Burridge JH; Hitchcock RA; Hermens HJ
    Disabil Rehabil; 2007 Dec; 29(24):1870-80. PubMed ID: 17852281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to measure cervical spine motion over extended periods of time.
    Syed FI; Oza AL; Vanderby R; Heiderscheit B; Anderson PA
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2092-8. PubMed ID: 17762810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional disability of the wrist: direct correlation with decreased wrist motion.
    Franko OI; Zurakowski D; Day CS
    J Hand Surg Am; 2008 Apr; 33(4):485-92. PubMed ID: 18406951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.