BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

786 related articles for article (PubMed ID: 16990012)

  • 1. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction.
    Byrne CA; O'Keeffe DT; Donnelly AE; Lyons GM
    J Electromyogr Kinesiol; 2007 Oct; 17(5):605-16. PubMed ID: 16990012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of a potential optimized stimulation intensity envelope for drop foot applications.
    O'Keeffe DT; Donnelly AE; Lyons GM
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):249-56. PubMed ID: 14518788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the kinetic-optimized stimulus intensity envelope for drop foot gait rehabilitation.
    Tanabe S; Kubota S; Itoh N; Kimura T; Muraoka Y; Shimizu A; Kanada Y
    J Med Eng Technol; 2012 May; 36(4):210-6. PubMed ID: 22428753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A foot drop correcting FES envelope design method using tibialis anterior EMG during healthy gait with a new walking speed control strategy.
    Chen M; Wang QB; Lou XX; Xu K; Zheng XX
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4906-9. PubMed ID: 21096659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of lower limb electromyography during overground walking: a comparison of maximal- and sub-maximal normalisation techniques.
    Murley GS; Menz HB; Landorf KB; Bird AR
    J Biomech; 2010 Mar; 43(4):749-56. PubMed ID: 19909958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIONic WalkAide for correcting foot drop.
    Weber DJ; Stein RB; Chan KM; Loeb G; Richmond F; Rolf R; James K; Chong SL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):242-6. PubMed ID: 16003906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses.
    Romkes J; Hell AK; Brunner R
    Gait Posture; 2006 Dec; 24(4):467-74. PubMed ID: 16413188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speed related changes in muscle activity from normal to very slow walking speeds.
    den Otter AR; Geurts AC; Mulder T; Duysens J
    Gait Posture; 2004 Jun; 19(3):270-8. PubMed ID: 15125916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibialis posterior EMG activity during barefoot walking in people with neutral foot posture.
    Murley GS; Buldt AK; Trump PJ; Wickham JB
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e69-77. PubMed ID: 18053742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of level of effort at the plantarflexors and hip extensors and flexor muscles in healthy subjects walking at different cadences.
    Requião LF; Nadeau S; Milot MH; Gravel D; Bourbonnais D; Gagnon D
    J Electromyogr Kinesiol; 2005 Aug; 15(4):393-405. PubMed ID: 15811610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20-60 years.
    Chung MJ; Wang MJ
    Gait Posture; 2010 Jan; 31(1):131-5. PubMed ID: 19939681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG analysis of peroneal and tibialis anterior muscle activity prior to foot contact during functional activities.
    McLoda TA; Hansen AJ; Birrer DA
    Electromyogr Clin Neurophysiol; 2004 Jun; 44(4):223-7. PubMed ID: 15224817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking while resisting a perturbation: Effects on ankle dorsiflexor activation during swing and potential for rehabilitation.
    Blanchette A; Lambert S; Richards CL; Bouyer LJ
    Gait Posture; 2011 Jul; 34(3):358-63. PubMed ID: 21733695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional electrical stimulation using microstimulators to correct foot drop: a case study.
    Weber DJ; Stein RB; Chan KM; Loeb GE; Richmond FJ; Rolf R; James K; Chong SL; Thompson AK; Misiaszek J
    Can J Physiol Pharmacol; 2004; 82(8-9):784-92. PubMed ID: 15523536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.
    Hart DJ; Taylor PN; Chappell PH; Wood DE
    Med Eng Phys; 2006 Jun; 28(5):438-48. PubMed ID: 16140559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation.
    Thompson AK; Estabrooks KL; Chong S; Stein RB
    Neurorehabil Neural Repair; 2009 Feb; 23(2):133-42. PubMed ID: 19023139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis.
    Paul L; Rafferty D; Young S; Miller L; Mattison P; McFadyen A
    Mult Scler; 2008 Aug; 14(7):954-61. PubMed ID: 18573839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electromyographic analysis of obligatory (hemiplegic cerebral palsy) and voluntary (normal) unilateral toe-walking.
    Romkes J; Brunner R
    Gait Posture; 2007 Oct; 26(4):577-86. PubMed ID: 17275305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.