BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16990251)

  • 1. Multiple pathways regulate intracellular shuttling of MoKA, a co-activator of transcription factor KLF7.
    Smaldone S; Ramirez F
    Nucleic Acids Res; 2006; 34(18):5060-8. PubMed ID: 16990251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a putative nuclear export signal motif in human NANOG homeobox domain.
    Park SW; Do HJ; Huh SH; Sung B; Uhm SJ; Song H; Kim NH; Kim JH
    Biochem Biophys Res Commun; 2012 May; 421(3):484-9. PubMed ID: 22516749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MoKA, a novel F-box protein that modulates Krüppel-like transcription factor 7 activity.
    Smaldone S; Laub F; Else C; Dragomir C; Ramirez F
    Mol Cell Biol; 2004 Feb; 24(3):1058-69. PubMed ID: 14729953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals.
    Elfgang C; Rosorius O; Hofer L; Jaksche H; Hauber J; Bevec D
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6229-34. PubMed ID: 10339570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal.
    Sato H; Masuda M; Miura R; Yoneda M; Kai C
    Virology; 2006 Aug; 352(1):121-30. PubMed ID: 16716375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionarily conserved nuclear export signal facilitates cytoplasmic localization of the Tbx5 transcription factor.
    Kulisz A; Simon HG
    Mol Cell Biol; 2008 Mar; 28(5):1553-64. PubMed ID: 18160705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel transferable nuclear export signal mediates CRM1-independent nucleocytoplasmic shuttling of the human cytomegalovirus transactivator protein pUL69.
    Lischka P; Rosorius O; Trommer E; Stamminger T
    EMBO J; 2001 Dec; 20(24):7271-83. PubMed ID: 11743003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARα and PPARγ.
    Umemoto T; Fujiki Y
    Genes Cells; 2012 Jul; 17(7):576-96. PubMed ID: 22646292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of two EBV Mta nuclear export signal sequences.
    Chen L; Liao G; Fujimuro M; Semmes OJ; Hayward SD
    Virology; 2001 Sep; 288(1):119-28. PubMed ID: 11543664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling.
    Li Y; Shao Y; Tong Y; Shen T; Zhang J; Li Y; Gu H; Li F
    Biochim Biophys Acta; 2012 Feb; 1823(2):465-75. PubMed ID: 22173096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A masked PY-NLS in Drosophila TIS11 and its mammalian homolog tristetraprolin.
    Twyffels L; Wauquier C; Soin R; Decaestecker C; Gueydan C; Kruys V
    PLoS One; 2013; 8(8):e71686. PubMed ID: 23951221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a nuclear export sequence in the MHC CIITA.
    Chiu E; Gold T; Fettig V; LeVasseur MT; Cressman DE
    J Immunol; 2015 Jun; 194(12):6102-11. PubMed ID: 25948812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1.
    Marg A; Shan Y; Meyer T; Meissner T; Brandenburg M; Vinkemeier U
    J Cell Biol; 2004 Jun; 165(6):823-33. PubMed ID: 15210729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear export of African swine fever virus p37 protein occurs through two distinct pathways and is mediated by three independent signals.
    Eulálio A; Nunes-Correia I; Carvalho AL; Faro C; Citovsky V; Salas J; Salas ML; Simões S; de Lima MC
    J Virol; 2006 Feb; 80(3):1393-404. PubMed ID: 16415017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleocytoplasmic shuttling and the biological activity of mouse survivin are regulated by an active nuclear export signal.
    Stauber RH; Rabenhorst U; Rekik A; Engels K; Bier C; Knauer SK
    Traffic; 2006 Nov; 7(11):1461-72. PubMed ID: 16984408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.
    Fung HY; Fu SC; Chook YM
    Elife; 2017 Mar; 6():. PubMed ID: 28282025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters.
    Hu W; Philips AS; Kwok JC; Eisbacher M; Chong BH
    Mol Cell Biol; 2005 Apr; 25(8):3087-108. PubMed ID: 15798196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues.
    Kurooka H; Sugai M; Mori K; Yokota Y
    Biochem Biophys Res Commun; 2013 Apr; 433(4):579-85. PubMed ID: 23523789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants of nuclear export signal orientation in binding to exportin CRM1.
    Fung HY; Fu SC; Brautigam CA; Chook YM
    Elife; 2015 Sep; 4():. PubMed ID: 26349033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.