These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 16990439)
1. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439 [TBL] [Abstract][Full Text] [Related]
2. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Turmel M; Gagnon MC; O'Kelly CJ; Otis C; Lemieux C Mol Biol Evol; 2009 Mar; 26(3):631-48. PubMed ID: 19074760 [TBL] [Abstract][Full Text] [Related]
3. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Archibald JM; Rogers MB; Toop M; Ishida K; Keeling PJ Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7678-83. PubMed ID: 12777624 [TBL] [Abstract][Full Text] [Related]
4. Nucleomorph and plastid genome sequences of the chlorarachniophyte Lotharella oceanica: convergent reductive evolution and frequent recombination in nucleomorph-bearing algae. Tanifuji G; Onodera NT; Brown MW; Curtis BA; Roger AJ; Ka-Shu Wong G; Melkonian M; Archibald JM BMC Genomics; 2014 May; 15(1):374. PubMed ID: 24885563 [TBL] [Abstract][Full Text] [Related]
5. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. Maruyama S; Suzaki T; Weber AP; Archibald JM; Nozaki H BMC Evol Biol; 2011 Apr; 11():105. PubMed ID: 21501489 [TBL] [Abstract][Full Text] [Related]
6. Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans. Rogers MB; Archibald JM; Field MA; Li C; Striepen B; Keeling PJ J Eukaryot Microbiol; 2004; 51(5):529-35. PubMed ID: 15537087 [TBL] [Abstract][Full Text] [Related]
7. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Ponce-Toledo RI; Moreira D; López-García P; Deschamps P Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337 [TBL] [Abstract][Full Text] [Related]
8. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species. Suzuki S; Hirakawa Y; Kofuji R; Sugita M; Ishida KI J Plant Res; 2016 Jul; 129(4):581-590. PubMed ID: 26920842 [TBL] [Abstract][Full Text] [Related]
9. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Tanifuji G; Onodera NT; Wheeler TJ; Dlutek M; Donaher N; Archibald JM Genome Biol Evol; 2011; 3():44-54. PubMed ID: 21147880 [TBL] [Abstract][Full Text] [Related]
10. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. Hirakawa Y; Burki F; Keeling PJ Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775 [TBL] [Abstract][Full Text] [Related]
11. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Jackson C; Knoll AH; Chan CX; Verbruggen H Sci Rep; 2018 Jan; 8(1):1523. PubMed ID: 29367699 [TBL] [Abstract][Full Text] [Related]
12. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Van de Peer Y; Rensing SA; Maier UG; De Wachter R Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7732-6. PubMed ID: 8755544 [TBL] [Abstract][Full Text] [Related]
13. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. Hrdá Š; Fousek J; Szabová J; Hampl V; Vlček Č PLoS One; 2012; 7(3):e33746. PubMed ID: 22448269 [TBL] [Abstract][Full Text] [Related]
14. Nucleomorph Genome Sequences of Two Chlorarachniophytes, Amorphochlora amoebiformis and Lotharella vacuolata. Suzuki S; Shirato S; Hirakawa Y; Ishida K Genome Biol Evol; 2015 May; 7(6):1533-45. PubMed ID: 26002880 [TBL] [Abstract][Full Text] [Related]
16. Phylogenomic analysis of "red" genes from two divergent species of the "green" secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. Yang Y; Matsuzaki M; Takahashi F; Qu L; Nozaki H PLoS One; 2014; 9(6):e101158. PubMed ID: 24972019 [TBL] [Abstract][Full Text] [Related]
17. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. Silver TD; Moore CE; Archibald JM J Eukaryot Microbiol; 2010; 57(6):453-9. PubMed ID: 21040099 [TBL] [Abstract][Full Text] [Related]