These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16990453)

  • 1. WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters.
    Kahle KT; Rinehart J; Ring A; Gimenez I; Gamba G; Hebert SC; Lifton RP
    Physiology (Bethesda); 2006 Oct; 21():326-35. PubMed ID: 16990453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases.
    Kahle KT; Rinehart J; Lifton RP
    Biochim Biophys Acta; 2010 Dec; 1802(12):1150-8. PubMed ID: 20637866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters.
    Alessi DR; Zhang J; Khanna A; Hochdörfer T; Shang Y; Kahle KT
    Sci Signal; 2014 Jul; 7(334):re3. PubMed ID: 25028718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule.
    Wu Y; Schellinger JN; Huang CL; Rodan AR
    J Biol Chem; 2014 Sep; 289(38):26131-26142. PubMed ID: 25086033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway.
    de Los Heros P; Kahle KT; Rinehart J; Bobadilla NA; Vázquez N; San Cristobal P; Mount DB; Lifton RP; Hebert SC; Gamba G
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1976-81. PubMed ID: 16446421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron.
    Subramanya AR; Yang CL; McCormick JA; Ellison DH
    Kidney Int; 2006 Aug; 70(4):630-4. PubMed ID: 16820787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia.
    Kahle KT; Gimenez I; Hassan H; Wilson FH; Wong RD; Forbush B; Aronson PS; Lifton RP
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2064-9. PubMed ID: 14769928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotransporters, WNKs and hypertension: an update.
    Flatman PW
    Curr Opin Nephrol Hypertens; 2008 Mar; 17(2):186-92. PubMed ID: 18277153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
    Leng Q; Kahle KT; Rinehart J; MacGregor GG; Wilson FH; Canessa CM; Lifton RP; Hebert SC
    J Physiol; 2006 Mar; 571(Pt 2):275-86. PubMed ID: 16357011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The opposing chloride cotransporters KCC and NKCC control locomotor activity in constant light and during long days.
    Eick AK; Ogueta M; Buhl E; Hodge JJL; Stanewsky R
    Curr Biol; 2022 Mar; 32(6):1420-1428.e4. PubMed ID: 35303416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family.
    Hebert SC; Mount DB; Gamba G
    Pflugers Arch; 2004 Feb; 447(5):580-93. PubMed ID: 12739168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular physiology of the WNK kinases.
    Kahle KT; Ring AM; Lifton RP
    Annu Rev Physiol; 2008; 70():329-55. PubMed ID: 17961084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Computation of the K+, Na+ and Cl- fluxes through plasma membrane of animal cell with Na+/K+ pump, NKCC, NC cotransporters, and ionic channels with and without non-Goldman rectification in K+ channels. Norma and apoptosis].
    Rubashkin AA; Iurinskaia VE; Vereninov AA
    Tsitologiia; 2010; 52(7):568-73. PubMed ID: 20799622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.
    Gamba G
    Am J Physiol Renal Physiol; 2005 Feb; 288(2):F245-52. PubMed ID: 15637347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of the cation-chloride cotransporters in neurological disease.
    Kahle KT; Staley KJ; Nahed BV; Gamba G; Hebert SC; Lifton RP; Mount DB
    Nat Clin Pract Neurol; 2008 Sep; 4(9):490-503. PubMed ID: 18769373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of WNK Kinases in the Modulation of Cell Volume.
    de Los Heros P; Pacheco-Alvarez D; Gamba G
    Curr Top Membr; 2018; 81():207-235. PubMed ID: 30243433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability.
    Kahle KT; Rinehart J; de Los Heros P; Louvi A; Meade P; Vazquez N; Hebert SC; Gamba G; Gimenez I; Lifton RP
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16783-8. PubMed ID: 16275911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
    Gamba G
    Physiol Rev; 2005 Apr; 85(2):423-93. PubMed ID: 15788703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoregulation of K
    Frenette-Cotton R; Marcoux AA; Garneau AP; Noel M; Isenring P
    J Cell Physiol; 2018 Jan; 233(1):396-408. PubMed ID: 28276587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.